當(dāng)且僅當(dāng)取等號 ④對 查看更多

 

題目列表(包括答案和解析)

若對于a>0,b>0,c>0,有,當(dāng)且僅當(dāng)a=b=c時取等號.則當(dāng)x>0時,的最小值為   

查看答案和解析>>

已知基本不等式:(a、b都是正實數(shù),當(dāng)且僅當(dāng)a=b時等號成立)可以推廣到n個正實數(shù)的情況,即對于n個正實數(shù)a1,a2,a3,…,an,有(當(dāng)且僅當(dāng)a1=a2=a3=…=an時,取等號).

同理,當(dāng)a、b都是正實數(shù)時,(a+b)()≥2ab·2·=4,可以推導(dǎo)出結(jié)論:對于n個正實數(shù)a1,a2,a3,…,an有(a1+a2+a3)()≥________;(a1+a2+a3+a4)()≥________;(a1+a2+a3+…+an)(+…)≥________;

如果對于n個同號實數(shù)a1,a2,a3,…,an(同正或者同負),那么,根據(jù)上述結(jié)論,(a1+a2+a3+…+an)(+…)的取值范圍是________.

查看答案和解析>>

設(shè)函數(shù)

解不等式;(4分)

事實上:對于成立,當(dāng)且僅當(dāng)時取等號.由此結(jié)論證明:.(6分)

 

查看答案和解析>>

設(shè)函數(shù)
解不等式;(4分)
事實上:對于成立,當(dāng)且僅當(dāng)時取等號.由此結(jié)論證明:.(6分)

查看答案和解析>>

設(shè)函數(shù)
解不等式;(4分)
事實上:對于成立,當(dāng)且僅當(dāng)時取等號.由此結(jié)論證明:.(6分)

查看答案和解析>>


同步練習(xí)冊答案