題目列表(包括答案和解析)
對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點 已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2時,求f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖像上A、B兩點的橫坐標(biāo)是函數(shù)f(x)的不動點,且A、B關(guān)于直線y=kx+對稱,求b的最小值.
對于函數(shù)f(x),若存在xo∈R,使f(xo)=xo成立,則xo為f(x)的不動點.已知函數(shù)f(x)=ax2+(b+1)x+(b-1)(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求 a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點的橫坐標(biāo)是函數(shù)f(x)的不動點,且A、B兩點關(guān)于直線y=kx+對稱,求b的最小值.
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求 a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點的橫坐標(biāo)是函數(shù)f(x)的不動點,且A、B兩點關(guān)于直線y=kx+對稱,求b的最小值.
已知橢圓的左右焦點分別為、,短軸兩個端點為、,且四邊形是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
一、填空題
1. 2. 3.156 4. - 5.
6. 7. 8.(理) (文) 9.0
10. 11.(理) (文)
二、選擇題
12.C 13.B 14.(理)C (文)B 15.B
三、解答題
16. 【解】(1)由已知:, (2分)
即, (4分)
∴,故。 (6分)
(2)由,得, (8分)
∴,。 (10分)
故。 (12分)
17.【解】
(理)設(shè)三次事件依次為,命中率分別為,
(1)令,則,∴,,。 (6分)
(2)。 (13分)
(文)拋物線的準(zhǔn)線是, (3分)
雙曲線的兩條漸近線是。 (6分)
三條線為成得三角形區(qū)域的頂點為,,,(10分)
當(dāng)時,。 (13分)
18.【解】(1),。(4分)
(2)令,,
,(8分)
即三位市民各獲得140、100和110元折扣。(10分)
(3)(元)。(16分)
19.【解】(1)直線的法向量,的方程:,
即為;…(2分)
直線的法向量,的方程:,
即為。 (4分)
(2)。 (6分)
設(shè)點的坐標(biāo)為,由,得。(8分)
由橢圓的定義的知存在兩個定點,使得恒為定值4。
此時兩個定點為橢圓的兩個焦點。(10分)
(3)設(shè),,則,,
由,得。(12分)
;
當(dāng)且僅當(dāng)或時,取最小值。(14分)
,故與平行。(16分)
20.【解】(1)由,得。由,得第二行的公差,,∴。(2分)
由,,得,∴。(4分)
(2);(6分)
。(10分)
(3),, 兩式相減,得,。(12分)當(dāng)時,。(13分)
①時,顯然能被21整除;(14分)
②假設(shè)時,能被21整除,當(dāng)時,
能被21整除。結(jié)論也成立。(17分)
由①、②可知,當(dāng)是3的倍數(shù)時,能被21整除。(18分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com