(Ⅱ)設(shè)點(diǎn)為(.0).點(diǎn)在橢圓上(與.均不重合).點(diǎn)在直線上.若直線的方程為.且.試求直線的方程. 查看更多

 

題目列表(包括答案和解析)

橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
1
2
,橢圓左準(zhǔn)線與x軸交于E(-4,0),過E點(diǎn)作不與y軸垂直的直線l與橢圓交于A、B兩個不同的點(diǎn)(A在E,B之間)
(1)求橢圓方程;   (2)求△AOB面積的最大值; (3)設(shè)橢圓左、右焦點(diǎn)分別為
F1、F2,若有
F1A
F2B
,求實(shí)數(shù)λ,并求此時直線l的方程.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在橢圓上,∠F1PF2=60°,設(shè)
|PF1|
|PF2|

(I)當(dāng)λ=2時,求橢圓離心率e;
(II)當(dāng)橢圓離心率最小時,PQ為過橢圓右焦點(diǎn)F2的弦,且|PQ|=
16
5
,求橢圓的方程.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點(diǎn)的坐標(biāo)分別為A(-2,0),B(2,0),離心率e=
1
2

(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)橢圓的兩焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是其上的動點(diǎn),
(1)當(dāng)△PF1F2內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標(biāo);
(2)若直線l:y=k(x-1)(k≠0)與橢圓交于M、N兩點(diǎn),證明直線AM與直線BN的交點(diǎn)在直線x=4上.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
左右兩焦點(diǎn)分別為F1,F(xiàn)2,且離心率e=
6
3

(1)設(shè)E是直線y=x+2與橢圓的一個交點(diǎn),求|EF1|+|EF2|取最小值時橢圓的方程;
(2)已知N(0,1),是否存在斜率為k的直線l與(1)中的橢圓交與不同的兩點(diǎn)A,B,使得點(diǎn)N在線段AB的垂直平分線上,若存在,求出直線l在y軸上截距的范圍;若不存在,說明理由.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),A1、A2、B1、B2分別為橢圓C的長軸與短軸的端點(diǎn).
(1)設(shè)點(diǎn)M(x0,0),若當(dāng)且僅當(dāng)橢圓C上的點(diǎn)P在橢圓長軸頂點(diǎn)A1、A2處時,|PM|取得最大值與最小值,求x0的取值范圍;
(2)若橢圓C上的點(diǎn)P到焦點(diǎn)距離的最大值為3,最小值為l,且與直線l:y=kx+m相交于A,B兩點(diǎn)(A,B不是橢圓的左右頂點(diǎn)),并滿足AA2⊥BA2.試研究:直線l是否過定點(diǎn)?若過定點(diǎn),請求出定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

B

B

A

D

C

D

B

C

A

D

二、填空題(每小題4分,共16分)

13、120; 14、20; 15、;16、2.

三、解答題

17、解:(Ⅰ)由正弦定理得,

  ……2分

,因?yàn)?sub>,所以,得   ……3分,因?yàn)?sub>,

所以,又為三角形的內(nèi)角,所以      ……2分

(Ⅱ),由 ……2分

,所以當(dāng)時,取最大值  ……3分

 

18、解:(Ⅰ)設(shè)公差為,由,得,

       ,因?yàn)閿?shù)列{}的各項(xiàng)均為正數(shù),

     所以得  ……3分  又,所以 ……2分

      由,  ……1分

(Ⅱ)由(Ⅰ)得……2分

  于是

         ……4分

19、(Ⅰ)如圖,連結(jié),因?yàn)?sub>、

分別是棱的中點(diǎn),

所以……2分

因?yàn)?sub>平面,,不在平面

內(nèi),所以平面 ……3分

(Ⅱ)解:因?yàn)?sub>平面,

所以,因?yàn)?sub>是直角梯形,

,所以,又,所以平面,即是三棱錐的高  ……4分  

因?yàn)?sub>是棱的中點(diǎn),所以

于是三棱錐的體積  ……3分

20、解:從5名同學(xué)、、、、中選出3名同學(xué)的基本事件空間為:

  

,共含有10個基本事件   ……3分

(Ⅰ)設(shè)事件為“同學(xué)被選取”,則事件包含6個基本事件,

      事件發(fā)生的概率為   ……3分

(Ⅱ)設(shè)事件為“同學(xué)和同學(xué)都被選取”,則事件包含3個基本事件,

      事件發(fā)生的概率為    ……3分

(Ⅲ)設(shè)事件為“同學(xué)和同學(xué)中至少有一個被選取”,則事件包含9個基本事件,事件發(fā)生的概率為   ……3分

 

 

21、解:(Ⅰ)由  ……2分

由點(diǎn),0),(0,)知直線的方程為,

于是可得直線的方程為    ……2分

因此,得,,

所以橢圓的方程為   ……2分

(Ⅱ)由(Ⅰ)知、的坐標(biāo)依次為(2,0)、,

因?yàn)橹本經(jīng)過點(diǎn),所以,得,

即得直線的方程為  ……2分

因?yàn)?sub>,所以,即   ……1分

設(shè)的坐標(biāo)為,則

,即直線的斜率為4    ……2分

又點(diǎn)的坐標(biāo)為,因此直線的方程為 ……1分

22、解:(Ⅰ),因?yàn)?sub>時取得極值,

所以是方程的根,即 ……2分

,又因?yàn)?sub>

所以的取值范圍是    ……2分

(Ⅱ)當(dāng)時,, ,

      因?yàn)?sub>,當(dāng)時,,內(nèi)單調(diào)遞減……2分

      當(dāng)時,,令解得

     ,令,解得,

     于是當(dāng)時,內(nèi)單調(diào)遞增,

內(nèi)單調(diào)遞減   ……2分

(Ⅲ)因?yàn)楹瘮?shù)時有極值,所以有,

消去,解之得,又,所以取,

此時  ……2分

因此,

可得當(dāng)時取極大值,

當(dāng)時取極小值  ……2分

如圖,方程有三個不相等的實(shí)數(shù)根,等價于直線與曲線

有三個不同的交點(diǎn),由圖象得  ……2分

 

 

 

 

 


同步練習(xí)冊答案