(2)設(shè)數(shù)列{an}的公比為f(t).作數(shù)列{bn}.使b1=1.bn=f().求數(shù)列{bn}的通項bn,(3)求和:b1b2-b2b3+b3b4--+b2n-1b2n-b2nb2n+1 變式: 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}的前n項和為Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t為正常數(shù),n=2,3,4…).
(1)求證:{an}為等比數(shù)列;
(2)設(shè){an}公比為f(t),作數(shù)列bn使b1=1,bn=f(
1bn-1
)(n≥2)
,試求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)

查看答案和解析>>

設(shè)數(shù)列{an}的首項a1=1,前n項和Sn滿足關(guān)系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}是公比為f(t),作數(shù)列{bn},使b1=1,bn=f(
1
bn-1
)
(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
(3)若t=-3,設(shè)cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n+1
(n+1)
≥(7-2n)Tn(n∈N+)恒成立的實數(shù)k的范圍.

查看答案和解析>>

設(shè)數(shù)列{an}的首項a1=1,前n項和Sn滿足關(guān)系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,(n∈N*,n≥2),求數(shù)列{bn}的通項公式;
(Ⅲ)數(shù)列{bn}滿足條件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

設(shè)數(shù)列{an}的首項a1=1,前n項和Sn滿足關(guān)系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,(n∈N*,n≥2),求數(shù)列{bn}的通項公式;
(Ⅲ)數(shù)列{bn}滿足條件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

設(shè)數(shù)列{an}的前n項和為Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t為正常數(shù),n=2,3,4…).
(1)求證:{an}為等比數(shù)列;
(2)設(shè){an}公比為f(t),作數(shù)列bn使數(shù)學(xué)公式,試求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)

查看答案和解析>>


同步練習(xí)冊答案