解得,綜上.直線的斜率為或 ----14分 查看更多

 

題目列表(包括答案和解析)

設(shè)拋物線>0)的焦點為,準(zhǔn)線為,上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為

則|FE|=,=,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點到直線的距離=

設(shè)直線的方程為:,代入得,

只有一個公共點, ∴=,∴

∴直線的方程為:,∴原點到直線的距離=,

∴坐標(biāo)原點到,距離的比值為3.

解析2由對稱性設(shè),則

      點關(guān)于點對稱得:

     得:,直線

     切點

     直線

坐標(biāo)原點到距離的比值為

 

查看答案和解析>>

 定義在區(qū)間上的函數(shù)y=6cosx的圖像與y=5tanx的圖像的交點為P,過點P作PP1⊥x軸于點P1,直線PP1與y=sinx的圖像交于點P2,則線段P1P2的長為_______▲_____

且其中的x滿足6cosx=5tanx,解得sinx=。線段P1P2的長為

 

查看答案和解析>>

設(shè)橢圓 )的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線  與橢圓 交于 , 兩點.

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點為,即

,解得橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當(dāng)直線斜率不存在時,經(jīng)檢驗不合題意.                    --------5分

②當(dāng)直線斜率存在時,設(shè)存在直線,且,.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>

精英家教網(wǎng)如圖所示,已知圓E:x2+(y-1)2=4交x軸分別于A,B兩點,交y軸的負(fù)半軸于點M,過點M作圓E的弦MN.
(1)若弦MN所在直線的斜率為2,求弦MN的長;
(2)若弦MN的中點恰好落在x軸上,求弦MN所在直線的方程;
(3)設(shè)弦MN上一點P(不含端點)滿足PA,PO,PB成等比數(shù)列(其中O為坐標(biāo)原點),試探求
PA
PB
的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系中,已知矩形ABCD的長為2,寬為1,AB、AD邊分別在x軸、y軸的正半軸上,A點與坐標(biāo)原點重合(如圖).將矩形折疊,使A點落在線段DC上.
(I)若折痕所在直線的斜率為k,試求折痕所在直線的方程;
(II)當(dāng)-2+
3
≤k≤0
時,求折痕長的最大值;
(Ⅲ)當(dāng)-2≤k≤-1時,折痕為線段PQ,設(shè)t=k(2|PQ|2-1),試求t的最大值.

查看答案和解析>>


同步練習(xí)冊答案