題目列表(包括答案和解析)
已知數(shù)列的前項(xiàng)和為,且 (N*),其中.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時(shí),由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對(duì)偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;
②假設(shè)時(shí),命題成立,即,
則當(dāng)時(shí),
即
即
故當(dāng)時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時(shí),,,故等式成立.
② 假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:
即,因此n=k+1時(shí)等式也成立
由①和②,可知對(duì)任意,成立.
已知各項(xiàng)都不為零的數(shù)列的前n項(xiàng)和為,,向量,其中N*,且∥.
(Ⅰ)求數(shù)列的通項(xiàng)公式及;
(Ⅱ)若數(shù)列的前n項(xiàng)和為,且(其中是首項(xiàng),第四項(xiàng)為的等比數(shù)列的公比),求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的運(yùn)用。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140140320381755_ST.files/image015.png">,對(duì)n=1, 分別求解通項(xiàng)公式,然后合并。利用,求解
(2)利用
裂項(xiàng)后求和得到結(jié)論。
解:(1) ……1分
當(dāng)時(shí),……2分
()……5分
……7分
……9分
證明:當(dāng)時(shí),
當(dāng)時(shí),
如圖,在四棱錐中,⊥底面,底面為正方形,,,分別是,的中點(diǎn).
(I)求證:平面;
(II)求證:;
(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問(wèn)利用線面平行的判定定理,,得到
第二問(wèn)中,利用,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,,從而得
第三問(wèn)中,借助于等體積法來(lái)求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是的中點(diǎn),
,. …4分
(Ⅱ)證明:四邊形為正方形,.
, .
, ,
.,. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
如圖,已知直線()與拋物線:和圓:都相切,是的焦點(diǎn).
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線交軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為, 直線與軸交點(diǎn)為,連接交拋物線于、兩點(diǎn),求△的面積的取值范圍.
【解析】第一問(wèn)中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去)
設(shè)與拋物線的相切點(diǎn)為,又,得,.
代入直線方程得:,∴ 所以,
第二問(wèn)中,由(Ⅰ)知拋物線方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.
令,得切線交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線
第三問(wèn)中,設(shè)直線,代入得結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線的相切點(diǎn)為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.
令,得切線交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)
(Ⅲ)設(shè)直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com