如圖.三棱錐中...兩兩互相垂直.且.,.分別為.的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

(09年濱州一模文)(12分)

如圖,三棱錐中,、、兩兩互相垂直,且,,分別為、的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

如圖,三棱錐A-BCD中,AD、BC、CD兩兩互相垂直,且AB=13,BC=3,CD=4,M、N分別為AB、AC的中點(diǎn).
(1)求證:BC∥平面MND;
(2)求證:平面MND⊥平面ACD;
(3)求三棱錐A-MND的體積.

查看答案和解析>>

如圖,三棱錐A-BCD中,AD、BC、CD兩兩互相垂直,且AB=13,BC=3,CD=4,M、N分別為AB、AC的中點(diǎn),
(1)求證:BC∥平面MND;
(2)求證:平面MND⊥平面ACD;
(3)求三棱錐A-MND的體積。

查看答案和解析>>

如圖,三棱錐A-BCD中,AD、BC、CD兩兩互相垂直,且AB=13,BC=3,CD=4,M、N分別為AB、AC的中點(diǎn).
(1)求證:BC∥平面MND;
(2)求證:平面MND⊥平面ACD;
(3)求三棱錐A-MND的體積.

查看答案和解析>>

精英家教網(wǎng)如圖,在三棱錐A-BCD中,AB,AC,AD兩兩互相垂直,AB=AC=AD=4,點(diǎn)P,Q分別在側(cè)面ABC棱AD上運(yùn)動(dòng),PQ=2,M為線段PQ中點(diǎn),當(dāng)P,Q運(yùn)動(dòng)時(shí),點(diǎn)M的軌跡把三棱錐A-BCD分成上、下兩部分的體積之比等于
 

查看答案和解析>>

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

  • <small id="j4ryc"><mark id="j4ryc"></mark></small>
    1. <form id="j4ryc"></form>

      1,3,5

      三、解答題

      (17)解:(Ⅰ)-             ---------------------------2分

      高三年級(jí)人數(shù)為-------------------------3分

      現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,應(yīng)在高三年級(jí)抽取的人數(shù)為

      (人).                       --------------------------------------6分

      (Ⅱ)設(shè)“高三年級(jí)女生比男生多”為事件,高三年級(jí)女生、男生數(shù)記為.

      由(Ⅰ)知

      則基本事件空間包含的基本事件有

      共11個(gè),     ------------------------------9分

      事件包含的基本事件有

      共5個(gè)   

                      --------------------------------------------------------------11分

      答:高三年級(jí)女生比男生多的概率為.  …………………………………………12分

      (18)解:(Ⅰ)  …………2分

      中,由于

                                              …………3分

      ,

                             

      ,所以,而,因此.…………6分

         (Ⅱ)由,

      由正弦定理得                                …………8分

      ,由(Ⅰ)知,所以    …………10分

      由余弦弦定理得 ,     …………11分

      ,

                                                     …………12分

      (19)(Ⅰ)證明:∵、分別為、的中點(diǎn),∴.

           又∵平面平面

      平面                                         …………4分

      (Ⅱ)∵,,∴平面.

      又∵,∴平面.

      平面,∴平面平面.               …………8分

      (Ⅲ)∵平面,∴是三棱錐的高.

      在Rt△中,.

          在Rt△中,.

       ∵,的中點(diǎn),

      ,

      .        ………………12分

      (20)解:(Ⅰ)依題意得

                                   …………2分

       解得,                                             …………4分

      .       …………6分

         (Ⅱ)由已知得,                  …………8分

                                                               ………………12分

      (21)解:(Ⅰ)

            令=0,得                        ………2分

      因?yàn)?sub>,所以可得下表:

      0

      +

      0

      -

      極大

                                                                ………………4分

      因此必為最大值,∴,因此,

          

          即,∴,

       ∴                                       ……………6分

      (Ⅱ)∵,∴等價(jià)于, ………8分

       令,則問(wèn)題就是上恒成立時(shí),求實(shí)數(shù)的取值范圍,為此只需,即,                 …………10分

      解得,所以所求實(shí)數(shù)的取值范圍是[0,1].            ………………12分

      (22)解:(Ⅰ)由得,,

      所以直線過(guò)定點(diǎn)(3,0),即.                       …………………2分

       設(shè)橢圓的方程為,

      ,解得

      所以橢圓的方程為.                    ……………………5分

      (Ⅱ)因?yàn)辄c(diǎn)在橢圓上運(yùn)動(dòng),所以,      ………………6分

      從而圓心到直線的距離

      所以直線與圓恒相交.                             ……………………9分

      又直線被圓截得的弦長(zhǎng)

      ,       …………12分

      由于,所以,則,

      即直線被圓截得的弦長(zhǎng)的取值范圍是.  …………………14分

       


      同步練習(xí)冊(cè)答案