圓上有3個點(diǎn),圓外有2個點(diǎn),連接這五個點(diǎn)中任意兩個點(diǎn),最少可得條不同的直線. A.3 B.4 C.5 D.6 查看更多

 

題目列表(包括答案和解析)

橢圓C:的左右焦點(diǎn)分別是F1,F(xiàn)2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點(diǎn)M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點(diǎn),設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

(2013•山東)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn)分別是F1,F(xiàn)2,離心率為
3
2
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點(diǎn)M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點(diǎn),設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明
1
kk1
+
1
kk2
為定值,并求出這個定值.

查看答案和解析>>


同步練習(xí)冊答案