(2)已知直線,與橢圓相似且半短軸長為的橢圓的方程. 查看更多

 

題目列表(包括答案和解析)

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓

(1)若橢圓判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;

(2)寫出與橢圓C1相似且短軸半軸長為b的焦點在x軸上的橢圓Cb的標準方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?

(3)如圖:直線y=x與兩個“相似橢圓”

分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

如圖,已知橢圓的焦點和上頂點分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.

(1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;

(2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當面積最大時, 是否與有關(guān)?并證明你的結(jié)論.

(3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認為有價值的相似橢圓之間的三種性質(zhì)(不需證明);

 

查看答案和解析>>

如圖,已知橢圓的焦點和上頂點分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;
(2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當面積最大時,是否與有關(guān)?并證明你的結(jié)論.
(3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認為有價值的相似橢圓之間的三種性質(zhì)(不需證明);

查看答案和解析>>

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓

(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;

(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?

(3)如圖:直線l與兩個“相似橢圓”分別交于點A,B和點C,D,證明:|AC|=|BD|

查看答案和解析>>

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓數(shù)學(xué)公式
(1)若橢圓數(shù)學(xué)公式,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”數(shù)學(xué)公式數(shù)學(xué)公式分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

一、          填空題:

 1、   2、   3、128  4、  5、64     6、 

 7、    8、    9、-4  10、15  11、

 12、(1)(2)(5)

二、選擇題:

 13、D      14、  C    15、  B    16、 C

 

17、解:以A為原點,以AB、AD、AP所在直線分別軸,

建立空間直角坐標系。 -----2分

則  C(2,1,0) N(1,0,1)  =(-1,-1,1)---4分

        D(0,2,0) M(1,,1) =(1,-,1)---6分

設(shè)的夾角為,

  ----8分  

  ---10分

  異面直線所成的角為  -----12分

18、解:延長,作于D,------4分

設(shè),則

 ------8分

解得.------10分

故船繼續(xù)朝原方向前進有觸礁的危險.-----12

 

19、解: (1)因為f(x+y)=f(x)+f(y),

令x=y=0,代入①式,-----2分

得f(0+0)=f(0)+f(0),即 f(0)=0  --------4分

(2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,

則有0=f(x)+f(-x).------6分

即f(-x)=-f(x)對任意x∈R成立,

所以f(x)是奇函數(shù).......8分

(3)    f(3)=log3>0,即f(3)>f(0),

又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),----10分

又由(1)f(x)是奇函數(shù).

  f(k?3)<-f(3-9-2)=f(-3+9+2),

k?3<-3+9+2,

------12

 ------------14分

20、解:(1)為等差數(shù)列,∵,又,

是方程的兩個根

又公差,∴,∴,      --------     2分

   ∴   ∴     -----------4分

(2)由(1)知,         -----------5分

,         ------------7分

是等差數(shù)列,∴,∴    ----------8分

舍去)                         ------------9分

(3)由(2)得                    -------------11分

  時取等號 ------- 13分

時取等號15分

(1)、(2)式中等號不可能同時取到,所以   -----------16分

 

 

 

21、解:(1)橢圓相似.   -----2分

因為的特征三角形是腰長為4,底邊長為的等腰三角形,

而橢圓的特征三角形是腰長為2,

底邊長為的等腰三角形,

因此兩個等腰三角形相似,且相似比為.                                                                                                              --- 6分

(2)橢圓的方程為:.        --------8分

假定存在,則設(shè)所在直線為,中點為.

.       -------10分

所以.

中點在直線上,所以有.        ----12分

.

.     -------14分

(3)橢圓的方程為:.        

兩個相似橢圓之間的性質(zhì)有:                          寫出一個給2分

①     兩個相似橢圓的面積之比為相似比的平方;

②     分別以兩個相似橢圓的頂點為頂點的四邊形也相似,相似比即為橢圓的相似比;

③     兩個相似橢圓被同一條直線所截得的線段中點重合;

過原點的直線截相似橢圓所得線段長度之比恰為橢圓的相似比.    ----20分

 

 

 

 


同步練習(xí)冊答案