題目列表(包括答案和解析)
數(shù)列首項,前項和滿足等式(常數(shù),……)
(1)求證:為等比數(shù)列;
(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項公式.
(3)設(shè),求數(shù)列的前項和.
【解析】第一問利用由得
兩式相減得
故時,
從而又 即,而
從而 故
第二問中, 又故為等比數(shù)列,通項公式為
第三問中,
兩邊同乘以
利用錯位相減法得到和。
(1)由得
兩式相減得
故時,
從而 ………………3分
又 即,而
從而 故
對任意,為常數(shù),即為等比數(shù)列………………5分
(2) ……………………7分
又故為等比數(shù)列,通項公式為………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當(dāng)時,;當(dāng)時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時,,成立.
假設(shè)當(dāng)時,不等式成立,
當(dāng)時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項公式, …………10分
, …………12分
所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
|
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com