.滿足②4分 查看更多

 

題目列表(包括答案和解析)

設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(2)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

求滿足下列條件的曲線標準方程
(1)已知橢圓的焦點坐標分別為(0,-4),(0,4),且a=5
(2)已知拋物線頂點在原點,焦點為(3,0)

查看答案和解析>>

求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經過點;橢圓的一個焦點到長軸兩端點的距離分別為10和4.

 

查看答案和解析>>

數(shù)列,滿足

(1)求,并猜想通項公式。

(2)用數(shù)學歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項公式求解,并用數(shù)學歸納法加以證明。第一問利用遞推關系式得到,,,并猜想通項公式

第二問中,用數(shù)學歸納法證明(1)中的猜想。

①對n=1,等式成立。

②假設n=k時,成立,

那么當n=k+1時,

,所以當n=k+1時結論成立可證。

數(shù)列,滿足

(1),,,并猜想通項公。  …4分

(2)用數(shù)學歸納法證明(1)中的猜想。①對n=1,等式成立。  …5分

②假設n=k時,成立,

那么當n=k+1時,

,             ……9分

所以

所以當n=k+1時結論成立                     ……11分

由①②知,猜想對一切自然數(shù)n均成立

 

查看答案和解析>>

求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經過點;橢圓的一個焦點到長軸兩端點的距離分別為10和4.

查看答案和解析>>


同步練習冊答案