=(1..)..∴二面角的大小是45° 查看更多

 

題目列表(包括答案和解析)

如圖(1)在直角梯形PDCB中,PD∥CB,CD⊥PD,PD=6,BC=3,DC=,A是線段PD的中點,E是線段AB的中點;如圖(2),沿AB把平面PAB折起,使二面角P-CD-B成45°角.
(1)求證PA⊥平面ABCD;
(2)求平面PEC和平面PAD所成的銳二面角的大小.

查看答案和解析>>

如圖,平面PAC⊥平面ABC,AC⊥BC,△PAC為等邊三角形,PE∥CB,M,N分別是線段AE,AP上的動點,且滿足:
AM
AE
=
AN
AP
=λ(0<λ<1).
(Ⅰ)求證:MN∥平面ABC;
(Ⅱ)求λ的值,使得平面ABC與平面MNC所成的銳二面角的大小為45°.

查看答案和解析>>

精英家教網(wǎng)如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成角是30°,點F是PB的中點,點E在矩形ABCD的邊BC上移動.
(Ⅰ)證明:無論點E在邊BC的何處,都有PE⊥AF;
(Ⅱ)當CE等于何值時,二面角P-DE-A的大小為45°.

查看答案和解析>>

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成角是30°,點F是PB的中點,點E在矩形ABCD的邊BC上移動.
(Ⅰ)證明:無論點E在邊BC的何處,都有PE⊥AF;
(Ⅱ)當CE等于何值時,二面角P-DE-A的大小為45°.

查看答案和解析>>

如圖,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點
F是PB的中點,點E在邊BC上移動,
(Ⅰ)當點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
(Ⅱ)證明:無論點E在邊BC的何處,都有PE⊥AF;
(Ⅲ)當BE等于何值時,二面角P-DE-A的大小為45°?

查看答案和解析>>


同步練習冊答案