, 12. , 13. , 查看更多

 

題目列表(包括答案和解析)

、某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子的發(fā)芽數(shù),如下


 

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取點(diǎn)2組數(shù)據(jù)進(jìn)行檢驗(yàn)

(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求關(guān)于的線性回歸方程

(2)若線性回歸方程得到的估計(jì)數(shù)據(jù)與所選點(diǎn)檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?

參考公式:

 

查看答案和解析>>

甲、乙兩名射手各自獨(dú)立地射擊同一目標(biāo)2次,甲每次擊中目標(biāo)的概率為
1
2
,乙每次擊中目標(biāo)的概率為
1
3

(I)求目標(biāo)不被擊中的概率;
(II)求乙比甲多擊中目標(biāo)1次的概率.

查看答案和解析>>

甲、乙、丙3人投籃,投進(jìn)的概率分別是
1
3
,
2
5
1
2

(Ⅰ)現(xiàn)3人各投籃1次,求3人都沒有投進(jìn)的概率;
(Ⅱ)用ξ表示乙投籃3次的進(jìn)球數(shù),求隨機(jī)變量ξ的概率分布及數(shù)學(xué)期望Eξ.

查看答案和解析>>

甲、乙、丙3人投籃,投進(jìn)的概率分別是
2
5
,
1
2
,
1
3
.現(xiàn)3人各投籃1次,求:
(Ⅰ)3人都投進(jìn)的概率;
(Ⅱ)3人中恰有2人投進(jìn)的概率.

查看答案和解析>>

甲、乙兩人練習(xí)射擊,命中目標(biāo)的概率分別為
1
2
1
3
,甲、乙兩人各射擊一次,有下列說法:
①目標(biāo)恰好被命中一次的概率為
1
2
+
1
3
;
②目標(biāo)恰好被命中兩次的概率為
1
2
×
1
3
; 
③目標(biāo)被命中的概率為
1
2
×
2
3
+
1
2
×
1
3
;  
④目標(biāo)被命中的概率為1-
1
2
×
2
3

以上說法正確的序號依次是( 。

查看答案和解析>>

選擇題:本大題共10小題,每小題5分,共50分.

             CABCA,BCDDC

二、填空題:本大題共5小題,每小題5分 ,共25分,

11. 12; 12. ; 13. 8; 14. x-2y-z+3=0;  15. ②④.

、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明,證明過程或演算步驟.

16.解:(Ⅰ) 由已知  ,   ∴    ,

又   ΔABC是銳角三角形,  ∴     ………………………………6分

(Ⅱ)

 

           ………………………………12分

17.解法一:(Ⅰ)∵,

 ∴ ,   ……………………3分

∵ 

∴                  ……………………6分

(Ⅱ)取的中點(diǎn),則,連結(jié),

,∴,從而

,交的延長線于,連結(jié),則由三垂線定理知, AC⊥MH,

從而為二面角的平面角            …………………8分

直線與直線所成的角為,∴   …………………9分

中,由余弦定理得

    在中,

中,

中,

故二面角的平面角大小為       …………………12分

解法二:(Ⅰ)同解法一

(Ⅱ)在平面內(nèi),過,建立空間直角坐標(biāo)系(如圖)

由題意有,設(shè),

………5分

由直線與直線所成的角為,得

,即,解得………7分

,設(shè)平面的一個(gè)法向量為,

,取,得         ……………9分

又  平面的法向量取為                   ……………10分

設(shè)所成的角為,則

故二面角的平面角大小為            ……………12分

18. 解:(I)記“幸運(yùn)觀眾獲得獎(jiǎng)金5000元”為事件M,即前兩個(gè)問題選擇回答A、C且答對,最后在回答問題B時(shí)答錯(cuò)了.

        故   幸運(yùn)觀眾獲得獎(jiǎng)金5000元的概率為          ………………6分

(II) 設(shè)幸運(yùn)觀眾按A→B→C順序回答問題所得獎(jiǎng)金數(shù)為隨機(jī)變量ξ,則ξ的取值可以為0元、1000元、3000元和7000元,其分布列為

0

1000

3000

7000

P

∴  元. ………………9分

設(shè)幸運(yùn)觀眾按C→B→A順序回答問題所得獎(jiǎng)金數(shù)為隨機(jī)變量η,則η的取值可以為0元、4000元、6000元和7000元,其分布列為

η

0

4000

6000

7000

P

元. ……11分

故   乙觀眾的選擇所獲獎(jiǎng)金期望較大.                   ………………12分

19.解:(1)∵     ……………………2分

由已知恒成立,即恒成立

又         ∴ 為所求        …………………………5分

     (2)取, ∵ ,  ∴ 

由已知上是增函數(shù),即,

也就是   即                …………8分

另一方面,設(shè)函數(shù),則

∴   上是增函數(shù),又

∴   當(dāng)時(shí),

∴    ,即 

綜上所述,………………………………………………13分

20.解:(Ⅰ) 由題意可知,平面區(qū)域如圖陰影所示. …3分

設(shè)動點(diǎn)為,則

,即

,x-y<0,即x2y2<0.

所以  y2x2=4(y>0),即為曲線的方程  …………6分

(Ⅱ)設(shè),,則以線段為直徑的圓的圓心為.

因?yàn)橐跃段為直徑的圓軸相切,所以半徑 ,

即                  ………………………8分

因?yàn)橹本AB過點(diǎn),當(dāng)AB ^ x軸時(shí),不合題意.

所以設(shè)直線AB的方程為    y=k(x-2).

代入雙曲線方程y2x2=4 (y>0)得:      (k2-1)x2-4k2x+(8k2-4)=0.

因?yàn)橹本l與雙曲線交于A,B兩點(diǎn),所以k≠±1.于是

x1x2=,x1x2=.

∴   |AB|=

∴  

化簡得:k4+2k2-1=0                  ……………………………11分

解得: k2=-1  (k2=--1不合題意,舍去).

由△=(4k2)2-4(k2-1)(8k2-4)=3k2-1>0,又由于y>0,所以-1<k<- .

所以直線l存在,其斜率為 k=-.        …………………13分

21. 解:(1) 因?yàn)? ,所以,

于是: , 即是以2為公比的等比數(shù)列.

  • <nav id="ch5oi"><acronym id="ch5oi"><pre id="ch5oi"></pre></acronym></nav>
      <style id="ch5oi"><legend id="ch5oi"></legend></style>
        <li id="ch5oi"><progress id="ch5oi"></progress></li>

      • <li id="ch5oi"><small id="ch5oi"></small></li>

          1+1

          因?yàn)?nbsp;   

          由題設(shè)知: ,解得:,

          又因?yàn)?sub>,所以,于是. ……3分

          得:

          因?yàn)?sub>是正整數(shù)列,  所以  .

          于是是等比數(shù)列.  又  , 所以  ,…………………5分

          (2) 由 得:

          得:         …………………6分

          設(shè)                    ①

                  ②

          當(dāng)時(shí),①式減去②式, 得

          于是,

          這時(shí)數(shù)列的前項(xiàng)和  .……………8分

          當(dāng)時(shí),.這時(shí)數(shù)列的前項(xiàng)和.…………9分

          (3) 證明:通過分析,推測數(shù)列的第一項(xiàng)最大,下面證明:

                              ③

          ,要使③式成立,只要 ,

          因?yàn)?nbsp;

          所以③式成立.

          因此,存在,使得對任意均成立.   ……………13分


          同步練習(xí)冊答案