題目列表(包括答案和解析)
C.選修4—4:坐標(biāo)系與參數(shù)方程
(本小題滿分10分)
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),判斷直線和圓的位置關(guān)系.
C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系中,求過(guò)橢圓(為參數(shù))的右焦點(diǎn)且與直線(為參數(shù))平行的直線的普通方程。
C.(選修4—4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正
半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被截
得的弦的長(zhǎng)度.
C.(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為(為參數(shù)),直線l的極坐標(biāo)方程為.點(diǎn)P在曲線C上,則點(diǎn)P到直線l的距離的最小值為 .
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程是(是參數(shù)),若以為極點(diǎn),軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.
一、選擇題:
1.A 2. D 3.C 4.A 5.D 6.A 7.B 8.B 9.C 10.C
二、填空題:
11. 12.100 13.2 14. 15. 16.276
三、解答題:
17.解:
(I)----2分
-------------3分
函數(shù)的最小正周期是 -------------4分
18.解:(Ⅰ)由已知得, 則. -------------4分
(Ⅱ)中國(guó)乒乓球隊(duì)獲得金牌數(shù)是一隨機(jī)變量,
它的所有可能取值為0,1,2,3,4 (單位: 枚).那么-------------5分
-------------6分
,
-------------8分
19.解:
(I)是矩形, --------------1分
又 -------------2分
-------------3分 CD ----------4分
(II)由,及(I)結(jié)論可知DA、DC、DS
兩兩互相垂直,
建立如圖所示的空間直角坐標(biāo)系
--------------5分
--------------6分
--------------7分
AD與SB所成的角的余弦為 --------------8分
(III)設(shè)面SBD的一個(gè)法向量為
--------------9分
CD是CS在面ABCD內(nèi)的射影,且
--------------6分
--------------8分
從而SB與AD的成的角的余弦為
(III)
面ABCD.
BD為面SDB與面ABCD的交線.
SDB
于F,連接EF, 從而得:
為二面角A―SB―D的平面角 --------------10分
在矩形ABCD中,對(duì)角線
中,
所以所求的二面角的余弦為 --------------12分
20.解:
(Ⅰ)由 ----------1分
----------2分
------------3分
(Ⅱ)假設(shè)存在實(shí)數(shù)t,使得為等差數(shù)列.
則 ------------4分
------------5分
------------6分
存在t=1,使得數(shù)列為等差數(shù)列. ------------7分
(Ⅲ)由(1)、(2)知: ------------8分
又為等差數(shù)列.
------------9分
------------10分
--11分
………………12分
21.解:
|