8.一個(gè)均勻的正方體骰子連續(xù)擲兩次.若以先后得到的點(diǎn)數(shù)m.n為點(diǎn)P(m.n).則點(diǎn)P在圓外部的概率為 查看更多

 

題目列表(包括答案和解析)

一個(gè)均勻的正方體骰子連續(xù)擲兩次,若以先后得到的點(diǎn)數(shù)m,n為點(diǎn)P(m,n),則點(diǎn)P在圓x2+y2=20外部的概率為( 。
A.
11
18
B.
13
18
C.
25
36
D.
23
36

查看答案和解析>>

一個(gè)均勻的正方體骰子連續(xù)擲兩次,若以先后得到的點(diǎn)數(shù)m,n為點(diǎn)P(m,n),則點(diǎn)P在圓x2+y2=20外部的概率為( )
A.
B.
C.
D.

查看答案和解析>>

一個(gè)均勻的正方體骰子連續(xù)擲兩次,若以先后得到的點(diǎn)數(shù)m,n為點(diǎn)P(m,n),則點(diǎn)P在圓x2+y2=20外部的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

一個(gè)均勻的正方體骰子連續(xù)擲兩次,若以先后得到的點(diǎn)數(shù)m,n為點(diǎn)P(m,n),則點(diǎn)P在圓x2+y2=20外部的概率為

[  ]

A.

B.

C.

D.

查看答案和解析>>

(2009•大連二模)一個(gè)均勻的正方體骰子連續(xù)擲兩次,若以先后得到的點(diǎn)數(shù)m,n為點(diǎn)P(m,n),則點(diǎn)P在圓x2+y2=20外部的概率為( 。

查看答案和解析>>

 

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

C

C

B

C

D

A

D

A

B

二、填空題

13.24    14.        15.     16.    ①④   

三、解答題

17. 解:(Ⅰ)因?yàn)楦鹘M的頻率和等于1,故第四組的頻率:

……4分

直方圖如右所示……………          

   (Ⅱ)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,

頻率和為

所以,抽樣學(xué)生成績的合格率是%..........................6分

   (Ⅲ), ,”的人數(shù)是9,18,15,3。所以從成績是60分以上(包括60分)的學(xué)生中選一人,該生是優(yōu)秀學(xué)生的概率是

 ……………………………………………………10分

18.(Ⅰ)證法一:取的中點(diǎn)G,連結(jié)FG、AG,

依題意可知:GF是的中位線,

則  GF∥,

      AE∥,

所以GF∥AE,且GF=AE,即四邊形AEFG為平行四邊形,………3分

則EF∥AG,又AG平面,EF平面,

所以EF∥平面.                            ………6分

證法二:取DC的中點(diǎn)G,連結(jié)FG,GE.

,平面, GF平面∴FG∥平面.………3分

同理:∥平面,且,∴平面EFG∥平面,平面,

∴EF∥平面.                                        ………6分

證法三:連結(jié)EC延長交AD于K,連結(jié), E、F分別CK、CD1的中點(diǎn),

所以   FE∥D1K                                    ……3分

∵FE∥D1K,平面, 平面,∴EF∥平面.………6分

   (Ⅱ)解:.

.

的值為1.   ………12分

19.解:(1)

    ………3分

∵角A為鈍角,

                 ………………4分

取值最小值,

其最小值為……………………6分

   (2)由………………8分

       ,

…………10分

在△中,由正弦定理得:   ……12分

20.解:(1)

由題意得,經(jīng)檢驗(yàn)滿足條件。      …………2分

(2)由(1)知…………4分

(舍去)…                   ……………6分

當(dāng)x變化時(shí),的變化情況如下表:

x

-1

(-1,0)

0

(0,1)

1

 

0

+

 

-1

-4

-3

             ……………9分

∵關(guān)于x的方程上恰有兩個(gè)不同的實(shí)數(shù)根,

                                        …………12分

21.解:⑴設(shè)動(dòng)點(diǎn)的坐標(biāo)為P(x,y),則=(x,y-2),=(x,y+2),=(2-x,-y)

?=m||2,

∴x2+y2-4=m[(x-2)2+y2

即(1-m)x2+(1-m)y2+4mx-4m-4=0,                      ………3分

若m=1,則方程為x=2,表示過點(diǎn)(2,0)且平行于y軸的直線;   ………4分

若m≠1,則方程化為:,表示以(,0)為圓心,以 為半徑的圓;                                                 ………6分

   (2)當(dāng)m=2時(shí),方程化為(x-4)2+y2=4;                       

設(shè),則,圓心到直線距離時(shí),………8分

解得,又,所以圖形為上半個(gè)圓(包括與軸的兩個(gè)交點(diǎn))……10分

故直線與半圓相切時(shí);

當(dāng)直線過軸上的兩個(gè)交點(diǎn)時(shí)知

因此的取值范圍是.                            ………12分

22.解:(1)

2

3

51

200

196

192

1

4

                                                                   ………4分

   (2)由題意知數(shù)列的前50項(xiàng)成首項(xiàng)為200,公差為-4的等差數(shù)列,從第51項(xiàng)開始,奇數(shù)項(xiàng)均為1,偶數(shù)項(xiàng)均為4.                             

從而=                    

=.              ……………6分       

   (3)當(dāng)時(shí),因?yàn)?sub>,                       

   所以                          …………8分       

當(dāng)時(shí),

因?yàn)?sub>,所以,       ……………10分       

當(dāng)時(shí),

綜上:.                                      ……………12分

 


同步練習(xí)冊(cè)答案