率為和 查看更多

 

題目列表(包括答案和解析)

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類.這三類工程所含項(xiàng)目的個(gè)數(shù)分別為6,4,2.現(xiàn)在3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).
(1)求他們選擇的項(xiàng)目所屬類別互不相同的概率;
(2)記ξ為3人中選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

19、為了了解噪聲污染的情況,某市環(huán)保局抽樣調(diào)查了80個(gè)測量點(diǎn)的噪聲聲級(單位:分貝),并進(jìn)行整理后分成五組,繪制出頻率分布直方圖,如圖所示.已知從左至右前四組的頻率分別是0.15,0.25,0.3,0.2,且噪聲聲級高于69.5分貝就會(huì)影響工作和生活,試問影響到工作和生活而需對附近區(qū)域進(jìn)行治理的測量點(diǎn)有多少個(gè)?

查看答案和解析>>

12、為了了解噪聲污染的情況,某市環(huán)保局抽樣調(diào)查了80個(gè)測量點(diǎn)的噪聲聲級(單位:分貝),并進(jìn)行整理后分成五組,繪制出頻率分布直方圖,如圖所示.已知從左至右前四組的頻率分別是0.15,0.25,0.3,0.2,且噪聲聲級高于69.5分貝就會(huì)影響工作和生活,那么影響到工作和生活而需對附近區(qū)域進(jìn)行治理的測量點(diǎn)有
8
個(gè).

查看答案和解析>>

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類.這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的
1
2
,
1
3
1
6
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè),
求:(1)他們選擇的項(xiàng)目所屬類別互不相同的概率;
(2)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

精英家教網(wǎng)為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校100名高三學(xué)生的視力情況,得到頻率分布直方圖,如右圖所示;由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)從左到右依次是等比數(shù)列{an}的前四項(xiàng),后6組的頻數(shù)從左到右依次是等差數(shù)列{bn}的前六項(xiàng).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求視力不小于5.0的學(xué)生人數(shù);
(3)設(shè)
c1
a1
+
c2
a2
+…+
cn
an
=bn+1(n∈N+)
,求數(shù)列{cn}的通項(xiàng)公式.

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

  13.0.1  14.63  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分(2)∵成等比數(shù)列   ∴

       ………………………8分

   ∴

   ∴         ………………………………………………10分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

              ………………………………………………5分

       ………………………………………7分

(2)                ………………………………………………8分

當(dāng)時(shí),  ………………………………………10分

當(dāng)時(shí),   …………………………7分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)可能值為        ……………………………………………………………5分

      …………………………10分

     …………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分(2)過,連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說明:若用空間向量解,請參照給分)

21.解:(1)設(shè),由

 

……………………2分

…………………………12分

又∵為定值,        ………………5分

為定值,∴為定值。

(2)∵,∴拋物線方程為:設(shè)點(diǎn)

由(1)知         ………………………………8分

又∵過點(diǎn)  ∴  ∴  ∴………………………………9分

代入橢圓方程得:

  ………………11分

                  

當(dāng)且僅當(dāng)                 即           上式取等號

                    

∴此時(shí)橢圓的方程為:             ………………………………………12分

22.解:(1)∵  ∴…1分

    設(shè)   ……2分

上為減函數(shù)  又   

時(shí),,∴上是減函數(shù)………4分(2)①∵時(shí)

 ∴…………………………………6分

又≤對一切恒成立 ∴        ……………8分

②顯然當(dāng)時(shí),不等式成立                 …………………………9分

當(dāng),原不等式等價(jià)于 ………10分

下面證明一個(gè)更強(qiáng)的不等式:…①

……②亦即 …………………………11分

由(1) 知上是減函數(shù)   又  ∴……12分

∴不等式②成立,從而①成立  又

綜合上面∴時(shí),原不等式成立     ……………………………14分

 

 

 


同步練習(xí)冊答案