在梯形ABCD中.AB∥CD.∠A=90°. AB=2.BC=3.CD=1.E是AD中點. 求證:CE⊥BE. 查看更多

 

題目列表(包括答案和解析)

在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn).
(1)當三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明;
(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值;
(3)當三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=
5
6
時,求PE及DH的長.精英家教網(wǎng)

查看答案和解析>>

在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.對角線AC和BD相交于點O,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn).
(1)如圖1,當三角板旋轉(zhuǎn)到點E落在BC邊上時,線段DE與BF的位置關(guān)系是
 
,數(shù)量關(guān)系是
 

(2)繼續(xù)旋轉(zhuǎn)三角板,旋轉(zhuǎn)角為α.請你在圖2中畫出圖形,并判斷(1)中結(jié)論還成立嗎?如果成立請加以證明;如果不成立,請說明理由;
(3)如圖3,當三角板的一邊CF與梯形對角線AC重合時,EF與CD相交于點P,若OF=
5
6
,求PE的長.精英家教網(wǎng)

查看答案和解析>>

在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn).
(1)當三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明;
(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值;
(3)當三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=數(shù)學(xué)公式時,求PE及DH的長.

查看答案和解析>>

在梯形ABCD中,ABCD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.對角線AC和BD相交于點O,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn).
(1)如圖1,當三角板旋轉(zhuǎn)到點E落在BC邊上時,線段DE與BF的位置關(guān)系是______,數(shù)量關(guān)系是______;
(2)繼續(xù)旋轉(zhuǎn)三角板,旋轉(zhuǎn)角為α.請你在圖2中畫出圖形,并判斷(1)中結(jié)論還成立嗎?如果成立請加以證明;如果不成立,請說明理由;
(3)如圖3,當三角板的一邊CF與梯形對角線AC重合時,EF與CD相交于點P,若OF=
5
6
,求PE的長.
精英家教網(wǎng)

查看答案和解析>>

在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn).
(1)當三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明;
(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值;
(3)當三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=時,求PE及DH的長.

查看答案和解析>>


同步練習(xí)冊答案