題目列表(包括答案和解析)
若關于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內,另一根在區(qū)間(1,3)內,記點(a,b)對應的區(qū)域為S.
(1)設z=2a-b,求z的取值范圍;
(2)過點(-5,1)的一束光線,射到x軸被反射后經(jīng)過區(qū)域S,求反射光線所在直線l經(jīng)過區(qū)域S內的整點(即橫縱坐標為整數(shù)的點)時直線l的方程.
若關于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內,另一根在區(qū)間(1,3)內,記點(a,b)對應的區(qū)域為S.
(1)設z=2a-b,求z的取值范圍;
(2)過點(-5,1)的一束光線,射到x軸被反射后經(jīng)過區(qū)域S,求反射光線所在直線l經(jīng)過區(qū)域S內的整點(即橫縱坐標為整數(shù)的點)時直線l的方程.
(本小題滿分12分)已知二次函數(shù)滿足,且關于x的方程的兩個實數(shù)根分別在區(qū)間(-3,-2),(0,1)內.(Ⅰ)的取值范圍;(Ⅱ)若函數(shù)在區(qū)間(-1-c,1-c)上具有單調性,求實數(shù)c的取值范圍.
(本小題滿分12分)已知二次函數(shù)滿足,且關于x的方程的兩個實數(shù)根分別在區(qū)間(-3,-2),(0,1)內.(Ⅰ)的取值范圍;(Ⅱ)若函數(shù)在區(qū)間(-1-c,1-c)上具有單調性,求實數(shù)c的取值范圍.
如圖所示,f(x)是定義在區(qū)間[-c,c](c>0)上的奇函數(shù),令g(x)=af(x)+b,并有關于函數(shù)g(x)的四個論斷:
①若a>0,對于[-1,1]內的任意實數(shù)m,n(m<n),>0恒成立;
②函數(shù)g(x)是奇函數(shù)的充要條件是b=0;
③若a≥1,b<0,則方程g(x)=0必有3個實數(shù)根;
④a∈R,g(x)的導函數(shù)(x)有兩個零點;
其中所有正確結論的序號是________.
一、DCABB DDCBC AB
二、13. 192 14. ―640 15. 4 16.
17.
(1) …5分
(2)由已知及(1)知
由正弦定理得:
……………………10分
18.由題設及等比數(shù)列的性質得 ①
又 ②
由①②得 或 …………………4分
或 …………………6分
或 …………………8分
當時, …………………10分
當時,………………12分
19.略(見課本B例1)
20.解:
(1)在正四棱柱中,因為
所以
又
連接交于點,連接,則,所以
所以是由截面與底面所成二面角的平面角,即
所以 .....................4分
(2)由題設知是正四棱柱.
因為
所以
又
所以是異面直線與之間的距離。
因為,而是截面與平面的交線,
所以
即異面直線與之間的距離為
(3)由題知
因為
所以是三棱錐的高,
在正方形中,分別是的中點,則
所以
即三棱錐的體積是.
21.(1)解:,由此得切線的方程為
………………………4分
(2)切線方程令,得
①
當且僅當時等號成立!9分
②若,則又由
………………………12分
22.(1)由題可得,設
又 又
點P的坐標為 ……………………3分
(2)由題意知,量直線的斜率必存在,設PB的斜率為
則PB的直線方程為:由 得
,顯然1是該方程的根
,依題意設故可得A點的橫坐標
……………………7分
(3)設AB的方程為,帶入并整理得
…………………()
設
點P到直線AB的距離
當且僅當,即時取“=”號(滿足條件)
故的面積的最大值為2 ………………………12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com