(1) 在圖1 中.求AD∶AB的值,在圖2中.求AP∶AB的值, (2) 比較S1+S2與S的大。 查看更多

 

題目列表(包括答案和解析)

如圖,等腰直角△ABC腰長為a,現(xiàn)分別按圖1、圖2方式在△ABC內(nèi)內(nèi)接一個正方形ADFE和正方形PMNQ.設(shè)△ABC的面積為S,正方形ADFE的面積為S1,正方形PMNQ的面積為S2,

 (1) 在圖1 中,求ADAB的值;在圖2中,求APAB的值;

 (2) 比較S1+S2S的大。

 


查看答案和解析>>

如圖,等腰直角△ABC腰長為a,現(xiàn)分別按圖1、圖2方式在△ABC內(nèi)內(nèi)接一個正方形ADFE和正方形PMNQ.設(shè)△ABC的面積為S,正方形ADFE的面積為S1,正方形PMNQ的面積為S2
(1)在圖1 中,求AD∶AB的值;在圖2中,求AP∶AB的值;
(2)比較S1+S2與S的大小。

查看答案和解析>>

如圖,△ABC中,點D在AC上,點E在BC上,且DE∥AB,將△CDE繞點C按順時針方向旋轉(zhuǎn)得到△CD′E′(使∠BCE′<180°),連接AD′、BE′,設(shè)直線BE′與AC、AD′分別交于點O、E.
(1)若△ABC為等邊三角形,則
AD′
BE′
的值為1,求∠AFB的度數(shù);
(2)若△ABC滿足∠ACB=60°,AC=
3
,BC=
2
,①求
AD′
BE′
的值和∠AFB的度數(shù);②若E為BC的中點,求△OBC面積的最大值.
精英家教網(wǎng)

查看答案和解析>>

奧地利數(shù)學(xué)家皮克發(fā)現(xiàn)了一個計算正方形網(wǎng)格紙中多邊形面積的公式:
S=a+
1
2
b-1,方格紙中每個小正方形的邊長為1,其中a表示多邊形內(nèi)部的格點數(shù),b表示多邊形邊界上的格點數(shù),S表示多邊形的面積.
注:①由n條線段依次首尾連接而成的封閉圖形叫做n邊形,這些線段的端點叫做頂點;
②網(wǎng)格中小正方形的頂點叫格點.
如:在圖①中,點A、B、C、D都正好在格點上,那么四邊形ABCD的面積S=8+
1
2
×4-1=9.
運用上述知識回答:

(1)如圖②中,求四邊形ABCD的面積;
(2)如圖③、④、⑤,若多邊形的頂點都在格點上,且面積為6,請畫出這樣三個形狀不同的多邊形(多邊形的邊數(shù)≥6).并寫出相應(yīng)的a、b的值.
a=
3
3
;  a=
1
1
;  a=
3
3
;
b=
8
8
.b=
12
12
.b=
8
8

查看答案和解析>>

如圖,過△ABC的頂點A作AE⊥BC,垂足為E.點D是射線AE上一動點(點D不與頂點A重合),連結(jié)DB、DC.已知BC=m,AD=n.

(1)若動點D在BC的下方時(如圖①),AE=3,DE=2,BC=6,求S四邊形ABDC
(2)若動點D在BC的下方時(如圖①),求S四邊形ABDC的值(結(jié)果用含m、n的代數(shù)式表示);
(3)若動點D在BC的上方時(如圖②),(1)中結(jié)論是否仍成立?說明理由;
(4)請你按以下要求在8×6的方格中(如圖③,每一個小正方形的邊長為1),設(shè)計一個軸對稱圖形.設(shè)計要求如下:對角線互相垂直且面積為6的格點四邊形(4個頂點都在格點上).

查看答案和解析>>


同步練習(xí)冊答案