我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點(diǎn)與原點(diǎn)的距離,即|x|=|x-0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點(diǎn)之間的距離;這個(gè)結(jié)論可以推廣為:|x-y|表示在數(shù)軸上數(shù)x、y對應(yīng)點(diǎn)之間的距離;在解題中,我們常常運(yùn)用絕對值的幾何意義.
①解方程|x|=2,容易看出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對應(yīng)的數(shù)為±2,即該方程的解為x=±2.
②在方程|x-1|=2中,x的值就是數(shù)軸上到1的距離為2的點(diǎn)對應(yīng)的數(shù),顯然x=3或x=-1.
③在方程|x-1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和-2的距離之和為5 的點(diǎn)對應(yīng)的x值,在數(shù)軸上1和-2的距離為3,滿足方程的x的對應(yīng)點(diǎn)在1的右邊或-2的左邊.若x的對應(yīng)點(diǎn)在1的右邊,由圖示可知,x=2;同理,若
x的對應(yīng)點(diǎn)在-2的左邊,可得x=-3,所以原方程的解是x=2或x=-3.根據(jù)上面的閱讀材料,解答下列問題:
(1)方程|x|=5的解是
x=±5
x=±5
.
(2)方程|x-2|=3的解是
x=5或-1
x=5或-1
.
(3)畫出圖示,解方程|x-3|+|x+2|=9.