題目列表(包括答案和解析)
(
山東勝利一中模擬)已知下列命題:A.;
B.函數(shù)f(|x|-1)的圖象向左平移1個單位后得到的函數(shù)圖象解析式為y=f(|x|);
C.函數(shù)y=f(1+x)的圖象與函數(shù)y=f(1-x)的圖象關于y軸對稱;
D.滿足條件,∠B=60°,AB=1的△ABC有兩個.其中正確命題的代號是_________.(按照原順序?qū)⑺姓_命題的代號都寫出來)
π |
4 |
π |
2 |
π |
6 |
π |
4 |
已知函數(shù)的周期為,圖象的一個對稱中心為,將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度后得到函數(shù)的圖象。
(Ⅰ)求函數(shù)與的解析式
(Ⅱ)是否存在,使得按照某種順序成等差數(shù)列?若存在,請確定的個數(shù),若不存在,說明理由;
(Ⅲ)求實數(shù)與正整數(shù),使得在內(nèi)恰有2013個零點
已知函數(shù)的周期為,圖象的一個對稱中心為,將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度后得到函數(shù)的圖象。
(Ⅰ)求函數(shù)與的解析式
(Ⅱ)是否存在,使得按照某種順序成等差數(shù)列?若存在,請確定的個數(shù),若不存在,說明理由;
(Ⅲ)求實數(shù)與正整數(shù),使得在內(nèi)恰有2013個零點
數(shù)學(文)
第I卷(共60分)
一、選擇題(每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
D
B
A
A
D
A
C
B
A
A
第Ⅱ卷(共90分)
二、填空題(每小題4分,共16分)
13. 14.3 15.97 16.③
三、解答題(共74分)
17.(本小題滿分12分)
(I)的內(nèi)角和。
,
(Ⅱ)
當即時,取最大值
18.(本題滿分12分)
記A:該夫婦生一個小孩是患病男孩,B:該夫婦生一個小孩是患病女孩:C:該夫婦生一個小孩是不患病男孩;D:該夫婦生一個小孩是不患病女孩,則
(I)
(Ⅱ)該夫婦所生的前兩個是患病男孩,后一個患病女孩的概率為,所以
19.(本題滿分12分)
解法一:(I)證明:連接,設,連接DE
三棱柱是正三棱柱,且,
四邊形是正方形,
∴E是的中點,又是的中點,
∴
∵平面平面,
∴平面
(Ⅱ)解:在平面內(nèi)作于點,在面;內(nèi)作于連接。
∵平面平面,∴平面,
∵是在平面上的射影,
∴是二面角的平面角
設在正中,
在中,在中,
從而
所以,二面角的平面角的余弦值為
解法二:建立空間直角坐標系,如圖,
(I)證明:連接設,連接,設
則
平面平面平面
(Ⅱ)解:∵
設是平面的法向量,則,且
故,取,得;
同理,可求得平面的法向量是
設二面角的大小為,則
所以,二面角的平面角的余弦值為
20.(本題滿分12分)
(I),依題意,,即
解得
令,得或列表可得:
1
+
0
―
0
+
遞增
極大
遞減
極小
遞增
所以,是極大值;是極小值
(Ⅱ)曲線方程為點不在曲線上,
設切點為,則點的坐標滿足
因,故切線的方程為
注意到點在切線上,有
化簡得,解得
21.(本題滿分12分)
(I)將代入得,整理得
由得,故
(Ⅱ)當兩條切線的斜率都存在而且不等于時,設其中一條的斜率為k,
則另外一條的斜率為
于是由上述結論可知橢圓斜率為k的切線方程為
①
又橢圓斜率為的切線方程為
②
由①得
由②得
兩式相加得
于是,所求P點坐標滿足因此,
當一條切線的斜率不存在時,另一條切線的斜率必為0,此時顯然也有
所以為定值。
22.(本題滿分14分)
(I)由知
當時,,化簡得
①
以代替得
②
兩式相減得
則,其中
所以,數(shù)列為等差數(shù)列
(Ⅱ)由,結合(I)的結論知
于是,
所以,原不等式成立
其他解法參照以上評分標準評分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com