題目列表(包括答案和解析)
如圖,已知圓錐體的側(cè)面積為,底面半徑和互相垂直,且,是母線的中點(diǎn).
(1)求圓錐體的體積;
(2)異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得,故
從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.
由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得,
故從而體積.
(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.
由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
設(shè)數(shù)列的各項(xiàng)均為正數(shù).若對(duì)任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.
(1)若數(shù)列是“J2型”數(shù)列,且,,求;
(2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.
【解析】1)中由題意,得,,,,…成等比數(shù)列,且公比,
所以.
(2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設(shè)公比為t. 由{}是“j3型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為;
,…成等比數(shù)列,設(shè)公比為;
…成等比數(shù)列,設(shè)公比為;
如圖,邊長為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
第二問中,作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
(2)作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
二面角O-AE-D的平面角的余弦值為
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[
【解析】第一問中因?yàn)橹本經(jīng)過點(diǎn)(,0),所以=,得.又因?yàn)閙>1,所以,故直線的方程為
第二問中設(shè),由,消去x,得,
則由,知<8,且有
由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().
由題意可知,2|MO|<|GH|,得到范圍
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com