(2)設(shè)橢圓的左.右頂點分別是A1.A2.且.求橢圓方程,的條件下.設(shè)Q的橢圓右準(zhǔn)線l上異于A的任意一點.直線QA1.QA2與橢圓的另一個交點分別為M.N.求證:直線MN與x軸交于定點. 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓C的中心在原點,長軸在x軸上,長軸的長等于2
3
,離心率為
3
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的左、右頂點分別為A1,A2,點M是橢圓上異于A1,A2的任意一點,設(shè)直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1kMA2為定值.

查看答案和解析>>

設(shè)橢圓C的中心在原點,長軸在x軸上,長軸的長等于2
3
,離心率為
3
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的左、右頂點分別為A1,A2,點M是橢圓上異于A1,A2的任意一點,設(shè)直線MA1,MA2的斜率分別為kMA1kMA2,證明kMA1kMA2為定值.

查看答案和解析>>

設(shè)橢圓C的中心在原點,長軸在x軸上,長軸的長等于,離心率為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的左、右頂點分別為A1,A2,點M是橢圓上異于A1,A2的任意一點,設(shè)直線MA1,MA2的斜率分別為,證明為定值.

查看答案和解析>>

橢圓的方程為=1,A1、A2分別是橢圓的左、右頂點,P是橢圓上任一點,作A1Q⊥A1P,A2Q⊥A2P,設(shè)A1Q與A2Q相交于點Q,求Q點的軌跡方程.

查看答案和解析>>

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

查看答案和解析>>

 

 

一、選擇題

 1―6  DBDCDD   7―12  ADCDCD

二、填空題

13.3   14.       15.-25    16.

三、解答題

17.(滿分12分)

解:       ∴       …………3分

  ∴不等式a+2     ∵a<0    ∴<1+  ……5分

①當(dāng)時,<0,不等式無解

②當(dāng)時,<0無解

③ 當(dāng)時,

xx                …………10分

綜上所述,原不等式的解集為:

①當(dāng)時,不等式無解

②當(dāng)時,不等式解集為

xx                …………12分

18.(滿分12分)

(1)甲乙兩隊各五名球員,一個間隔一個排序,出場序的種數(shù)是……3分

 

(2)甲隊五名球員,取連續(xù)兩名的方法數(shù)為4。若不考慮乙隊,甲隊有具只有連續(xù)兩名隊員射中的概率為                      …………………7分

(3)甲、乙兩隊點球罰完,再次出現(xiàn)平局,可能的情況以下6種,即均未中球,均中1球,…均中5球,故所求概率為

       …………………12分

19.(1)∵AA1⊥面ABCD, ∴AA1⊥BD,

又BD⊥AD, ∴BD⊥A1D                                  …………………2分

又A1D⊥BE,∴A1D⊥平面BDE                              …………………3分

(2)連B1C,則B1C⊥BE,易證Rt△CBE∽Rt△CBB1,

,又E為CC1中點,∴

                                           ……………………5分

取CD中點M,連BM,則BM⊥平面CD1,作MN⊥DE于N,連NB,則∠BNM是二面角B―DE―C的平面角            ……………………7分

Rt△CED中,易求得MN=中,∠BNM=

∴∠BNM=arctan                                       …………………10分

(3)易證BN長就是點B到平面A1DE的距離                    …………………11分

∴∠BN=                           …………………12分

20.(滿分12分)

解:(Ⅰ)由 。           …………………2分

b2=ac及正弦定理得sin2B=sin A sin C.

于是    cot A + cot C =

=

=

=

=

=

=                              …………………7分

(Ⅱ)由      ?      =,得,又由,可得,即。

由余弦定理

                                …………………9分

所以                                          …………………12分

21.(滿分13分)

解:(Ⅰ)              …………………4分

(Ⅱ)…………………6分

=                                       …………………8分

                                     …………………9分

∴數(shù)列是等比數(shù)列,且       …………………10分

(Ⅲ)由(Ⅱ)得:    …………………11分

………………12分

                        ………………13分

22.(滿分13分)

解:(Ⅰ)∵橢圓方程為ab>0,c>0,c2=a2-b2

,FP的中點D的坐標(biāo)為()……2分

直線AB的方程為:∵D在直線AB上∴……3分

化簡得    ∴…………………4分

(Ⅱ)…………5分   

       =-3  ∴                                        …………………6分

由(Ⅰ)得:                                                              …………………7分

∴橢圓方程為:                                                  …………………8分

(Ⅲ)設(shè)直線QA1QA2斜率分別為k1、k2,則

解得……10分由

解得

直線MN的方程為y=0

化簡得

  ∴

即直線MN與x軸交于定點()      ……………13分


同步練習(xí)冊答案