1.求證: =32cos20°
分析:本題證明方向顯然是從左邊證到右邊同時(shí),注意到角與函數(shù)次數(shù)的變化,運(yùn)用降冪公式sin2α=可使等式中的角與函數(shù)的次數(shù)得到統(tǒng)一
證法一:左邊=
∴原式成立
證法二:左邊=
∴原式成立
評(píng)注:關(guān)于三角函數(shù)的化簡(jiǎn)、求值、證明問(wèn)題要善于觀察、聯(lián)想公式之間的內(nèi)在聯(lián)系,通過(guò)拆、配等方法去分析問(wèn)題和解決問(wèn)題證法一中的常值代換(用cos60°代),角的分拆(20°分成40°-20°,60°分成40°+20°)及公式的逆用,是實(shí)施三角變形的重要方法
例1在△ABC中,已知cosA =,sinB =,則cosC的值為…………(A)
A B C D
解:∵C = p - (A + B) ∴cosC = - cos(A + B)
又∵AÎ(0, p) ∴sinA = 而sinB = 顯然sinA > sinB
∴A > B 即B必為銳角 ∴ cosB =
∴cosC = - cos(A + B) = sinAsinB - cosAcosB =
例2在△ABC中,ÐC>90°,則tanAtanB與1的關(guān)系適合………………(B)
A tanAtanB>1 B tanAtanB>1 C tanAtanB =1 D不確定
解:在△ABC中 ∵ÐC>90° ∴A, B為銳角 即tanA>0, tanB>0
又:tanC<0 于是:tanC = -tan(A+B) = <0
∴1 - tanAtanB>0 即:tanAtanB<1
又解:在△ABC中 ∵ÐC>90° ∴C必在以AB為直徑的⊙O內(nèi)(如圖)
|
設(shè)CD = h,C’D = h’,AD = p,BD = q,
|
|
|
例3已知,,,,
求sin(a + b)的值
解:∵ ∴
又 ∴
∵ ∴
又 ∴
∴sin(a + b) = -sin[p + (a + b)] =
例4已知sina + sinb = ,求cosa + cosb的范圍
解:設(shè)cosa + cosb = t,
則(sina + sinb)2 + (cosa + cosb)2 = + t2
∴2 + 2cos(a - b) = + t2
即 cos(a - b) = t2 -
又∵-1≤cos(a - b)≤1 ∴-1≤t2 -≤1
∴≤t≤
例5設(shè)a,bÎ(,),tana、tanb是一元二次方程的兩個(gè)根,求 a + b
解:由韋達(dá)定理:
∴
又由a,bÎ(,)且tana,tanb < 0 (∵tana+tanb<0, tanatanb >0)
得a + bÎ (-p, 0) ∴a + b =
例6 已知sin(p - a) - cos(p + a) =(0<a<p),求sin(p + a) + cos(2p - a)的值
解:∵sin(p - a) - cos(p + a) = 即:sin a + cos a = ①
又∵0<<1,0<a<p ∴sina>0, cosa<0
令a = sin(p + a) + cos(2p - a) = - sina + cosa 則 a<0
由①得:2sinacosa =
例7 已知2sin(p - a) - cos(p + a) = 1 (0<a<p),求cos(2p - a) + sin(p + a)的值
解:將已知條件化簡(jiǎn)得:2sin a + cos a = 1 ①
設(shè)cos(2p - a) + sin(p + a) = a , 則 a = cos a - sin a ②
①②聯(lián)立得:
∵sin2a + cos2a = 1 ∴
∴5a2 + 2a - 7 = 0,
解之得:a1 = , a2 = 1(舍去)(否則sina = 0, 與0<a<p不符)
∴cos(2p - a) + sin(p + a) =
20.已知函數(shù).
(1)試判斷在上的單調(diào)性;
(2)當(dāng)時(shí),求證函數(shù)的值域的長(zhǎng)度大于(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m).
19.(1) 設(shè)函數(shù),且數(shù)列滿足= 1,(n∈N,);求數(shù)列的通項(xiàng)公式.
(2)設(shè)等差數(shù)列、的前n項(xiàng)和分別為和,且 ,, ;求常數(shù)A的值及的通項(xiàng)公式.
(3)若,其中、即為(1)、(2)中的數(shù)列、的第項(xiàng),試求.
18.如圖,點(diǎn)A、B、C都在冪函數(shù)的圖像上,它們的橫坐標(biāo)分別是a、a+1、a+2 又A、B、C在x軸上的射影分別是A′、B′、C′,記△AB′C的面積為f(a),△A′BC′的面積為g(a)
(1)求函數(shù)f(a)和g(a)的表達(dá)式;
(2)比較f(a)與g(a)的大小,并證明你的結(jié)論
17.某商店經(jīng)銷一種奧運(yùn)紀(jì)念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務(wù)部門上交元(為常數(shù),4<a≤5)的稅收.設(shè)每件產(chǎn)品的日售價(jià)為x元(35≤x≤41),根據(jù)市場(chǎng)調(diào)查,日銷售量與(e為自然對(duì)數(shù)的底數(shù))成反比例.已知每件產(chǎn)品的日售價(jià)為40元時(shí),日銷售量為10件.
(1)求該商店的日利潤(rùn)L(x)元與每件產(chǎn)品的日售價(jià)x元的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的日售價(jià)為多少元時(shí),該商品的日利潤(rùn)L(x)最大,并求出L(x)的最大值.
16.已知冪函數(shù)的圖象關(guān)于y軸對(duì)稱,且在上是減函數(shù),求滿足的a的取值范圍.
15.如圖、是單位圓上的點(diǎn),是圓與軸正半軸的交點(diǎn),點(diǎn)的坐標(biāo)為,三角形為直角三角形.
(1)求,;
(2)求線段的長(zhǎng).
14.函數(shù),圖象上的最高點(diǎn)為A,最低點(diǎn)為B,A、B兩點(diǎn)之間的距離是,則實(shí)數(shù)的取值范圍是________________.
13.已知定義在上的奇函數(shù)的圖象關(guān)于直線對(duì)稱,,則的值為________________.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com