【題目】如圖,在平面直角坐標系中,點的坐標分別為、,

1 作出與關(guān)于軸對稱的, 的坐標為

2 再將繞點順時針旋轉(zhuǎn)得到畫出;

3)求出在(2)的變換過程中,點到達點走過的路徑長

【答案】1)圖見解析,;(2)圖見解析;(3

【解析】

1)利用關(guān)于x軸對稱的點橫坐標不變,縱坐標互為相反數(shù)寫出A1、B1、C1的坐標,然后描點即可;
2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點B2、C2,從而得到A1B2C2;
3)先計算出A1B1的長,然后利用弧長計算點B1到達點B2走過的路徑長.

解:(1)如圖,A1B1C1為所作;A1-1,-3);
故答案為(-1,-3);

2)如圖,A1B2C2為所作;

3,

所以點B1到達點B2走過的路徑長

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有4張正面分別寫有數(shù)字12、34的卡片,將4張卡片的背面朝上,洗勻.

1)若從中任意抽取1張,抽的卡片上的數(shù)字恰好為3的概率是________;

2)若先從中任意抽取1張(不放回),再從余下的3張中任意抽取1張,求抽得的2張卡片上的數(shù)字之和為3的倍數(shù)的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標是2:

(1)求反比例函數(shù)的表達式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教材呈現(xiàn):如圖是華師版九年級上冊數(shù)學教材第78頁的部分內(nèi)容.

2 如圖,在中,分別是邊的中點,相交于點,求證:,

證明:連結(jié)

請根據(jù)教材提示,結(jié)合圖,寫出完整的證明過程.

結(jié)論應用:在中,對角線交于點,為邊的中點,、交于點

1)如圖,若為正方形,且,則的長為   

2)如圖,連結(jié)于點,若四邊形的面積為,則的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2<a<﹣其中正確結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸交于點(點在點的左側(cè)),與軸交于點.垂直于軸的直線與拋物線交于點,,與直線交于點,若,記,則的取值范圍為(

A.5s6B.6s7C.7s8D.8s9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點分別是邊上的兩點,且分別交.下列結(jié)論:①;②平分;③;④.其中正確的結(jié)論是( )

A.②③④B.①④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABCD的對角線AC的中點與坐標原點重合,點Ex軸上一點,連接AE.若AD平分,反比例函數(shù)的圖象經(jīng)過AE上的兩點A,F,且,的面積為18,則k的值為(

A.6B.12C.18D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中.

利用尺規(guī)作圖,在BC邊上求作一點P,使得點PAB的距離的長等于PC的長;

利用尺規(guī)作圖,作出中的線段PD.

要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑

查看答案和解析>>

同步練習冊答案