【題目】如圖,AB是一棵古樹,某校初四(1)班數(shù)學(xué)興趣小組的同學(xué)想利用所學(xué)知識測出這棵古樹的高,過程如下:在古樹同側(cè)的水平地面上,分別選取了C、D兩點(C、D兩點與古樹在同一直線上),用測角儀在C處測得古樹頂端A的仰角α=60°,在D處測得古樹頂端A的仰角β=30°,又測得C、D兩點相距14米.已知測角儀高為1.5米,請你根據(jù)他們所測得的數(shù)據(jù)求出古樹AB的高.(精確到0.1米,≈1.732)
【答案】AB的高約為13.6米.
【解析】
如圖,連接FE并延長交AB于G,則易得FE=CD=14米,GB=FD=1.5米,由三角形的外角性質(zhì)和和等腰三角形的判定可得AE=FE,然后根據(jù)解直角三角形的知識可求出AG的長,而AB=AG+GB,進而可得結(jié)果.
解:如圖,連接FE并延長交AB于G,則FG⊥AB,四邊形FDBG、CDFE是矩形,FE=CD=14米,GB=FD=EC=1.5米,
∵∠AEG=α=60°,∠AFE=β=30°,∴∠FAE=30°,∴∠AFE=∠FAE,∴AE=FE=14米,
在Rt△AEG中,∵sinα=,∴.
∴AB=AG+GB=+1.5≈13.6米.
即古樹AB的高約為13.6米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,以為邊作等邊,延長,分別交于點,連接、、與相交于點,給出下列結(jié)論:①;②;③;④,其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O相切于E、F、G三點,且AB∥CD,OB=6cm,OC=8cm.
(Ⅰ)求證:OB⊥OC;
(Ⅱ)求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(5,4),B(0,3),C(2,1).
(1)畫出△ABC關(guān)于原點成中心對稱的△A1B1C1,并寫出點C1的坐標;
(2)畫出將A1B1C1繞點C1按順時針旋轉(zhuǎn)90°所得的△A2B2C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,以點C(0,4)為圓心,半徑為4的圓交y軸正半軸于點A,AB是⊙C的切線.動點P從點A開始沿AB方向以每秒1個單位長度的速度運動,點Q從O點開始沿x軸正方向以每秒4個單位長度的速度運動,且動點P、Q從點A和點O同時出發(fā),設(shè)運動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1,求經(jīng)過A、P1、Q1三點的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切?并寫出此時點P和點Q的坐標;
(3)在(2)的條件下,拋物線對稱軸l上存在一點N,使NP+NQ最小,求出點N的坐標并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中AB=AC,點D為BC邊的中點,點F是AB邊上一點,點E在線段DF的延長線上,∠BAE=∠BDF,點M在線段DF上,∠ABE=∠DBM.
1.如圖1,當(dāng)∠ABC=45°時,求證:AE=MD;
2.如圖2,當(dāng)∠ABC=60°時,則線段AE、MD之間的數(shù)量關(guān)系為: .
3.在(2)的條件下延長BM到P,使MP=BM,連接CP,若AB=7,AE=,求tan∠ACP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說明點D在⊙O上;
(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)有一塊長為米,寬為米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路(陰影部分),余下的四塊矩形小場地建成草坪.
(1)請分別寫出每條道路的面積(用含或的代數(shù)式表示);
(2)若,并且四塊草坪的面積之和為144平方米,試求原來矩形場地的長與寬各為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com