【題目】如圖,直線y=﹣3x+3與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,以線段AB為邊,在線段AB的左側(cè)作正方形ABCD,點(diǎn)C在反比例函數(shù)y=(k≠0)的圖象上,當(dāng)正方形ABCD沿x軸正方向向右平移_____個(gè)單位長度時(shí),正方形ABCD的一個(gè)頂點(diǎn)恰好落在該反比例函數(shù)圖象上.
【答案】或4
【解析】
根據(jù)題意直線關(guān)系式可先求出點(diǎn)C的坐標(biāo),進(jìn)而求出反比例函數(shù)的k值,然后分類討論正方形的哪個(gè)點(diǎn)恰好落在該反比例函數(shù)圖象上進(jìn)而解答.
解:當(dāng)x=0時(shí),y=﹣3×0+3=3,∴A(0,3),即OA=3;
當(dāng)y=0時(shí),即0=﹣3x+3,
∴x=1,∴B(1,0),即OB=1;
過點(diǎn)C作CE⊥x軸,垂足為E,過點(diǎn)D作DF⊥y軸,垂足為F,
∵ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠CBE+∠ABO=90°
又∵CE⊥x軸
∴∠CEB=90°=∠AOB,
∴∠ECB+∠CBE=90°
∴∠ECB=∠ABO,
∴△AOB≌△BEC (AAS)
∴BE=AO=3,CE=OB=1,
同理可證△ADF≌△ABO,得DF=AO=3,AF=OB=1
∴C(﹣2,﹣1)D(﹣3,2)
將C(﹣2,﹣1)代入y=得:k=2
∴y=;
(1)當(dāng)y=3時(shí),即3=,∴x=, 即當(dāng)正方形ABCD沿x軸正方向向右平移個(gè)單位,點(diǎn)A落在反比例函數(shù)的圖象上;
(2)當(dāng)y=2時(shí),即2=,∴x=1,D沿著x軸向右平移1+3=4個(gè)單位落在反比例的圖象上,即當(dāng)正方形ABCD沿x軸正方向向右平移4個(gè)單位,點(diǎn)D落在反比例函數(shù)的圖象上;
故答案為:或4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ADC=∠ABC=90°,連接AC、BD,作DF⊥AC,交AC于點(diǎn)E,交BC于點(diǎn)F,∠ADB=2∠DBC,若BC=,DF=5,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做格點(diǎn),例如A(1,4),B(1,1),C(4,1),D(4,4),E(2,1)都是格點(diǎn).
(1)取格點(diǎn)F,使得BF⊥AE,BF=AE;
(2)將線段BF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°,得到線段FM;
(3)用無刻度的直尺在AD上取點(diǎn)N,使得FN=CF+AN,保留作圖痕跡,并直接寫出點(diǎn)F,M,N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b交x軸于點(diǎn)A(1,0) ,與雙曲線 交于點(diǎn)
(1)求直線AB的解析式為____ ____________;
(2)若 x 軸上存在動(dòng)點(diǎn) M(m,0),過點(diǎn) M 且與 x 軸垂直的直線與直線AB交于點(diǎn)C,與雙曲線交于點(diǎn)D(C、D兩點(diǎn)不重合),當(dāng)BC >BD時(shí),寫出m的取值范圍_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高中招生指標(biāo)到校是我市中考招生制度改革的一項(xiàng)重要措施.某初級(jí)中學(xué)對(duì)該校近四年指標(biāo)到校保送生人數(shù)進(jìn)行了統(tǒng)計(jì),制成了如下兩幅不完整的統(tǒng)計(jì)圖:
(1)該校近四年保送生人數(shù)的極差是 .請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)該校2009年指標(biāo)到校保送生中只有1位女同學(xué),學(xué)校打算從中隨機(jī)選出2位同學(xué)了解他們進(jìn)人高中階段的學(xué)習(xí)情況.請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)計(jì)劃根據(jù)學(xué)生的興趣愛好組建課外興趣小組,并隨機(jī)抽取了部分同學(xué)的興趣愛好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:
學(xué)校這次調(diào)查共抽取了 名學(xué)生;
求的值并補(bǔ)全條形統(tǒng)計(jì)圖;
在扇形統(tǒng)計(jì)圖中,“圍棋”所在扇形的圓心角度數(shù)為 ;
設(shè)該校共有學(xué)生名,請(qǐng)你估計(jì)該校有多少名學(xué)生喜歡足球.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚運(yùn)載火箭從距雷達(dá)站C處5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點(diǎn)A,B時(shí),在雷達(dá)站C處測得點(diǎn)A,B的仰角分別為34°,45°,其中點(diǎn)O,A,B在同一條直線上.求A,B兩點(diǎn)間的距離(結(jié)果精確到0.1km).
(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小明與同學(xué)們?cè)谏狡碌钠履_A處測得廣告牌底部D的仰角為53°,沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度,AB=10米,AE=21米,求廣告牌CD的高度.(測角器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年全球超級(jí)計(jì)算機(jī)500強(qiáng)名單公布,中國超級(jí)計(jì)算機(jī)“神威·太湖之光”和“天河二號(hào)”攜手奪得前兩名.已知“神威·太湖之光”的浮點(diǎn)運(yùn)算速度是“天河二號(hào)”的2.74倍.這兩種超級(jí)計(jì)算機(jī)分別進(jìn)行100億億次浮點(diǎn)運(yùn)算,“神威·太湖之光”的運(yùn)算時(shí)間比“天河二號(hào)”少18.75秒,求這兩種超級(jí)計(jì)算機(jī)的浮點(diǎn)運(yùn)算速度.設(shè)“天河二號(hào)”的浮點(diǎn)運(yùn)算速度為億億次/秒,依題意,可列方程為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com