【題目】如圖,在直角邊分別為的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有個直角三角形的內(nèi)切圓,它們的面積分別記為,,,,則________

【答案】π

【解析】

圖1,作輔助線構(gòu)建正方形,設(shè)圓的半徑為,根據(jù)切線長定理表示出的長,利用列方程求出半徑、是直角邊,為斜邊),運用圓面積公式求出面積;圖2,先求斜邊上的高的長,再由勾股定理求出,利用半徑、是直角邊,為斜邊)求兩個圓的半徑,從而求出兩圓的面積和;圖3,繼續(xù)求高,利用半徑、是直角邊,為斜邊)求三個圓的半徑,從而求出三個圓的面積和;據(jù)此規(guī)律進行求解即可.

圖1,過點,,垂足為、,則

四邊形為矩形

矩形為正方形

設(shè)圓的半徑為,則,

,

圖2,由

由勾股定理得:,

由(1)得:的半徑的半徑

圖3,由

由勾股定理得:,

由(1)得:的半徑,的半徑的半徑

圖4中的

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五端午節(jié)來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?

3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,BDAC于點D,FAC=ABC,且∠FACAC下方.點P,Q分別是射線BD,射線AF上的動點,且點P不與點B重合,點Q不與點A重合,連接CQ,過點PPECQ于點E,連接DE.

(1)若∠ABC=60°,BP=AQ.

①如圖1,當(dāng)點P在線段BD上運動時,請直接寫出線段DE和線段AQ的數(shù)量關(guān)系和位置關(guān)系;

②如圖2,當(dāng)點P運動到線段BD的延長線上時,試判斷①中的結(jié)論是否成立,并說明理由;

(2)若∠ABC=2α≠60°,請直接寫出當(dāng)線段BP和線段AQ滿足什么數(shù)量關(guān)系時,能使(1)中①的結(jié)論仍然成立(用含α的三角函數(shù)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,函數(shù)yx0)的圖象G經(jīng)過點A4,1),與直線yx+b的圖象交于點B,與y軸交于點C.其中橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記圖象G在點A、B之間的部分與線段OA、OC、BC圍成的區(qū)域(不含邊界)為W.若W內(nèi)恰有4個整點,結(jié)合函數(shù)圖象,b的取值范圍是(  )

A.b1bB.b1b

C.b<﹣1或﹣bD.b<﹣1b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABBC,∠ABC90°DAC中點,點P是線段AD上的一點,點P與點A、點D不重合),連接BP.將ABP繞點P按順時針方向旋轉(zhuǎn)α角(α180°),得到A1B1P,連接A1B1、BB1

1)如圖①,當(dāng)α90°,在α角變化過程中,請證明∠PAA1=∠PBB1

2)如圖②,直線AA1與直線PB、直線BB1分別交于點EF.設(shè)∠ABPβ,當(dāng)90°α180°時,在α角變化過程中,是否存在BEFAEP全等?若存在,求出αβ之間的數(shù)量關(guān)系;若不存在,請說明理由;

3)如圖③,當(dāng)α90°時,點E、F與點B重合.直線A1B與直線PB相交于點M,直線BBAC相交于點Q.若AB,設(shè)APx,CQy,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設(shè)每個房間定價增加10 x元(x為整數(shù))。

(1)(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。

(2)(4分)設(shè)賓館每天的利潤為W元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?

(3)(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:當(dāng)日所獲利潤不低于5000元,賓館為游客居住的房間共支出費用沒有超過600元,每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線經(jīng)過點,與y軸交于點B,與拋物線的對稱軸交于點

1)求m的值;

2)求拋物線的頂點坐標(biāo);

3是線段AB上一動點,過點N作垂直于y軸的直線與拋物線交于點(點P在點Q的左側(cè)).若恒成立,結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前我市“校園手機”現(xiàn)象越來越受到社會關(guān)注,針對這種現(xiàn)象,我市某中學(xué)九年級數(shù)學(xué)興趣小組的同學(xué)隨機調(diào)查了學(xué)校若干名家長對“中學(xué)生帶手機”現(xiàn)象的看法.統(tǒng)計整理并制作了如下的統(tǒng)計圖:

(1)這次調(diào)查的家長總數(shù)為__________,家長表示“不贊同”的人數(shù)為________________;

(2)從這次接受調(diào)查的家長中隨機抽查一個,恰好是“贊同”的家長的概率是____________;

(3)求圖②中表示家長“無所謂”的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點,與軸交于兩點

求拋物線的解析式;

如圖1,直線交拋物線兩點,為拋物線之間的動點,過點作軸于點于點,求的最大值;

如圖2,平移拋物線的頂點到原點得拋物線,直線交拋物線兩點,在拋物線上存在一個定點,使,求點的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案