【題目】現(xiàn)有若干根長度相同的火柴棒,用a根火柴棒,按如圖①擺放時可擺成m個正方形,用b根火柴棒,按如圖②擺放時可擺成2n個正方形.(m、n是正整數(shù))

1)如圖①,當(dāng)m=4時,a=______;如圖②,當(dāng)b=52時,n=______;

2)當(dāng)若干根長度相同的火柴棒,既可以擺成圖①的形狀,也可以擺成圖②的形狀時,mn之間有何數(shù)量關(guān)系,請你寫出來并說明理由;

3)現(xiàn)有61根火柴棒,用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀.請你直接寫出一種擺放方法.

【答案】1a=13,n=10;(23m+1=5n+2;(3)如圖①擺放1個正方形,如圖②擺放11個正方形

【解析】

1)根據(jù)每多一個正方形多用2根火柴棒寫出擺放m個正方形所用的火柴棒的根數(shù),然后把m=4代入進(jìn)行計算即可得解;

2)根據(jù)a相等列出關(guān)于m、n的關(guān)系式;

3)可以擺出圖①說明a是比3的倍數(shù)多1的數(shù),可以擺出圖②說明2a是比5的倍數(shù)多2的數(shù),所以,2a56的倍數(shù)大2的數(shù),并且現(xiàn)有61根火柴棒進(jìn)而得出答案.

1)由圖可知,圖①每多1個正方形,多用3根火柴棒,所以,m個小正方形共用3m+1根火柴棒,

圖②每多2個正方形,多用5根火柴棒,所以,2n個小正方形共用5n+2根火柴棒,

當(dāng)m=4時,a=3×4+1=13,

圖②可以擺放5n+2=52個小正方形,

n=10.2)∵都用a根火柴棒,

3m+1=5n+2,

整理得,3m=5n+1;

3)∵3m+1+5n+2=61,

3m+5n=58,

當(dāng)m=1n=11,是方程的根,

∴第一個圖形擺放3×1+1=4根火柴棒,

第二個圖形擺放5×11+2=57根火柴棒,

如圖,

4+57=61

∴符合題意(答案不唯一).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將A,B,C,D四人隨機分成甲、乙兩組參加羽毛球比賽,每組兩人。

(1)A在甲組的概率是多少?

(2)A,B都在甲組的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對角線ACBD相交于點O,PAD上的動點,過點PPMAC,PNBD,垂足分別為MN,若AB=m,BC=n,則PM+PN=( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里,裝有三個分別標(biāo)有數(shù)字1,2,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為y.

(1)寫出(x,y)的所有可能出現(xiàn)的結(jié)果;

2)小明、小華各取一次,由取出小球所確定的數(shù)字作為點的坐標(biāo),這樣的點(x,y)中落在反比例函數(shù)y=的圖象上的點的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,∠BAD的平分線與BC的延長線交于點E、與DC交于點F,且點F為邊DC的中點,∠ADC的平分線交AB于點M,交AE于點N,連接DE

(1) 求證:BC=CE

(2) DM=2,求DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADEDCF,連接AF,BE

(圖1) (圖2) (備用圖)

(1)請判斷:AFBE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;

(2)如圖2,若將條件“兩個等邊三角形ADEDCF”變?yōu)椤皟蓚等腰三角形ADEDCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;

(3)若三角形ADEDCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地果園分別有橘子40噸和60噸,CD兩地分別需要橘子30噸和70噸;已知從A、BC、D的運價如表:

C

D

A果園

每噸15

每噸12

B果園

每噸10

每噸9

1)若從A果園運到C地的橘子為x噸,則從A果園運到D地的橘子為 噸,從A果園將橘子運往D地的運輸費用為 .

2)用含x的式子表示出總運輸費(要求:列式、化簡)

3)若這批橘子在C地和D地進(jìn)行再加工,經(jīng)測算,全部橘子加工完畢后總成本為w元,且.則當(dāng)x= 時,w有最 值(填“大”或“小”),這個值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分FEB,則FEB的度數(shù)是

查看答案和解析>>

同步練習(xí)冊答案