【題目】如圖,矩形ABCD長與寬的比為5:3,點E、F分別在邊BC、CD上,tan∠1=,tan∠2=,則cos(∠1+∠2)的值為( )
A.B.C.D.
【答案】B
【解析】
設AB=3a=CD,AD=BC=5a,可求CF=2a=BE,EC=AB=3a,由“SAS”可證△ABE≌△ECF,可得AE=EF,∠1=∠FEC,可求∠EAF=45°,即可求cos(∠1+∠2)的值.
連接EF
∵矩形ABCD長與寬的比為5:3,
∴設AB=3a=CD,AD=BC=5a,
∵,
∴BE=2a,DF=a,
∴CF=2a=BE,EC=AB=3a,且∠B=∠C=90°
∴△ABE≌△ECF(SAS)
∴AE=EF,∠1=∠FEC
∵∠1+∠AEB=90°
∴∠AEB+∠FEC=90°
∴∠AEF=90°,且AE=EF
∴∠EAF=45°
∴∠1+∠2=45°
∴cos(∠1+∠2)=.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與反比例函數(shù)在第二象限內的圖象相交于點.
(1)求反比例函數(shù)的解析式;
(2)將直線向上平移后與反比例函數(shù)圖象在第二象限內交于點,與軸交于點,且的面積為,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,ABCD為正方形,將正方形的邊CB繞點C順時針旋轉到CE,記∠BCE=α,連接BE,DE,過點C作CF⊥DE于F,交直線BE于H.
(1)當α=60°時,如圖1,則∠BHC= ;
(2)當45°<α<90°,如圖2,線段BH、EH、CH之間存在一種特定的數(shù)量關系,請你通過探究,寫出這個關系式: (不需證明);
(3)當90°<α<180°,其它條件不變(如圖3),(2)中的關系式是否還成立?若成立,說明理由;若不成立,寫出你認為成立的結論,并簡要證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,∠ACB=30°,將△ACD繞C點順時針旋轉α(0°<α<360°)至△A'CD'位置.
(1)如圖2,若AB=2,α=30°,求S△BCD′.
(2)如圖3,取AA′中點O,連OB、OD′、BD′.若△OBD′存在,試判定△OBD′的形狀.
(3)當α=α1時,OB=OD′,則α1= °;當α=α2時,△OBD′不存在,則α2= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
(1)求證:DC為⊙O切線;
(2) 若AD·OC=8,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了推動陽光體育運動的廣泛開展,引導學生走向操場、走進大自然、走到陽光下,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用.現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制出如下的統(tǒng)計圖①和圖②,請根據相關信息,解答下列問題:
(Ⅰ)本次接受隨機抽樣調查的學生人數(shù)為________,圖①中的值為________;
(Ⅱ)求本次調查獲取的樣本數(shù)據的眾數(shù)和中位數(shù);
(Ⅲ)根據樣本數(shù)據,若學校計劃購買150雙運動鞋,建議購買35號運動鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年4月28日,由世界月季聯(lián)合會、中國花卉協(xié)會中國花卉協(xié)會月季分會主辦的“2019世界月季洲際大會暨第九屆中國月季展”在河南陽開幕.來自澳大利亞、比利時、智利、芬蘭等個國家的專家學者和其他各界人士共襄盛會,交流月季裁培造景、育種、文化等方面的研究進展及成果.為了解該市民對月季展的關注情況(選項分為:“A.——高度關注”,“B.——般關”.“C.——關注度低”,“D——不關注”,某校興趣小組隨機采訪該市部分市民,對采訪情況制作了如下不完整的統(tǒng)計圖表.
根據以上統(tǒng)計圖,解答下列問題:
本次接受采訪的市民共有 人;
在扇形統(tǒng)計圖中,扇形的圓心角的度數(shù)是 ;
請補全條形統(tǒng)計圖;
若該市區(qū)有萬人,根據采訪結果,估計不關注月季展市民的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經過第一象限內的一點A(n,4),過點A作AB⊥x軸于點B,且△AOB的面積為2.
(1)求m和n的值;
(2)若一次函數(shù)y=kx+2的圖象經過點A,并且與x軸相交于點C,求線段AC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com