【題目】附加題:如圖,直線:與軸、軸分別交于點(diǎn)、,經(jīng)過、兩點(diǎn)的拋物線與軸的另一個(gè)交點(diǎn)為.
(1)求該拋物線的解析式;
(2)若點(diǎn)在直線下方的拋物線上,過點(diǎn)作軸交于點(diǎn),軸交于點(diǎn),求的最大值;
(3)設(shè)為直線上的點(diǎn),以、、、為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.
【答案】(1);(2)3;(3)能,或
【解析】
(1)先求點(diǎn)B與點(diǎn)C的坐標(biāo),再將求得的坐標(biāo)代入拋物線求解方程組即得.
(2)由(1)先設(shè)點(diǎn)坐標(biāo),其中點(diǎn)P的橫坐標(biāo)為m,再將PD+PE用含m的式子表示,最后利用二次函數(shù)的性質(zhì)求出最大值;
(3)當(dāng)AB為平行四邊形的邊時(shí),設(shè)點(diǎn)的坐標(biāo),進(jìn)而利用列方程求解即得;當(dāng)AB為平行四邊形的對(duì)角線時(shí),先求交于點(diǎn)的坐標(biāo),再利用列方程求解即得.
解:(1)∵直線與軸、軸分別交于點(diǎn)、,
∴、,
∵、在拋物線上,
∴解得:,
∴拋物線的解析式為
(2)設(shè)
∵軸,軸,點(diǎn)及點(diǎn)都在直線上,
∴,,
∴
∴當(dāng)時(shí),的最大值是3;
(3)能,理由如下:
由,令,解得:或,
∴,
∴,
若以、、、為頂點(diǎn)的四邊形能構(gòu)成平行四邊形,
①當(dāng)以為邊時(shí),則且
設(shè),則,
∴,
解得:或(與重合,舍去),
∴
②當(dāng)以為對(duì)角線時(shí),連接交于點(diǎn),則,,
設(shè),∵,,
∴,∴,∴,
如圖,作于點(diǎn),于點(diǎn),則,,
設(shè),則,
∴,
解得:或(與重合,舍去),
∴,
綜上所述,以、、、為頂點(diǎn)的四邊形能構(gòu)成平行四邊形,此時(shí)點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)是2,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接MN,則在點(diǎn)M運(yùn)動(dòng)過程中,線段MN長(zhǎng)度的最小值是( )
A. B. 1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)A(0,4),點(diǎn)B是x軸正半軸上的點(diǎn),記△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)m=6時(shí),點(diǎn)B的橫坐標(biāo)a的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,旗桿及升旗臺(tái)的剖面和教學(xué)樓的剖面在同一平面上,旗桿與地面垂直,在教學(xué)樓底部E點(diǎn)處測(cè)得旗桿頂端的仰角∠AED=58°,升旗臺(tái)底部到教學(xué)樓底部的距離DE=7米,升旗臺(tái)坡面CD的坡度i=1:0.75,坡長(zhǎng)CD=2米,若旗桿底部到坡面CD的水平距離BC=1米,求旗桿AB的高度約為多少?(保留一位小數(shù),參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的兩直角邊,分別在軸的負(fù)半軸和軸的正半軸上,為坐標(biāo)原點(diǎn),,兩點(diǎn)的坐標(biāo)分別為、,拋物線經(jīng)過點(diǎn),且頂點(diǎn)在直線上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若是由沿軸向右平移得到的,當(dāng)四邊形是菱形時(shí),試判斷點(diǎn)和點(diǎn)是否在該拋物線上,并說明理由;
(3)在(2)的條件下,若點(diǎn)是所在直線下方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作平行于軸交于.設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)度為.求與之間的函數(shù)關(guān)系式,寫出自變量的取值范圍,并求取最大值時(shí),點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在中,,點(diǎn)在上,以為半徑的⊙交于,的垂直平分線交于,交于,連接.
(1)求證:是⊙的切線;
(2)若,,且,求⊙的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) C 為 Rt△ACB 與 Rt△DCE 的公共點(diǎn),∠ACB=∠DCE=90°,連 接 AD、BE,過點(diǎn) C 作 CF⊥AD 于點(diǎn) F,延長(zhǎng) FC 交 BE 于點(diǎn) G.若 AC=BC=25,CE=15, DC=20,則的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(3,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),且A,B,C三點(diǎn)不在同一條直線上,當(dāng)△ABC的周長(zhǎng)最小時(shí),點(diǎn)C的坐標(biāo)是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com