【題目】如圖,中,,以為直徑的圓與相交于點,與的延長線相交于點,過點作于點
(1)求證:是圓的切線;
(2)若,,求的長.
【答案】(1)見解析;(2).
【解析】
((1)由等腰三角形的性質(zhì)可證∠ODB=∠C,從而OD//AC,可證OD⊥DF,即可解決問題;
(2)連結(jié)BE,根據(jù)直徑所對的圓周角為直角得出,根據(jù)已知用AE表示出AB、EC、BE,從而可得,然后由△DFC∽△BEC,得,由此即可計算CF長.
(1)證明:如圖,連接OD,
∵OB=OD,∴∠B=∠ODB.
∵AB=AC,∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切線
(2)解:如圖,連接BE,
∵AB是直徑,
∴∠AEB=90°.
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE==AE,
∴.
∵∠DFC=∠AEB=90°,
∴DF∥BE,
∴△DFC∽△BEC,
∴,
∴DF=FC.
∵DF=2,
∴CF=.
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O.如圖,
(1)作⊙O的直徑AB;
(2)以點A為圓心,AO長為半徑畫弧,交⊙O于C,D兩點;
(3)連接CD交AB于點E,連接AC,BC.
根據(jù)以上作圖過程及所作圖形,有下面三個推斷:
①CE=DE; ②BE=3AE; ③BC=2CE.
所有正確推斷的序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了研究一種新藥的療效,選100名患者隨機分成兩組,每組各50名,一組服藥,另一組不服藥,12周后,記錄了兩組患者的生理指標和的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者;
同時記錄了服藥患者在4周、8周、12周后的指標z的改善情況,并繪制成條形統(tǒng)計圖.
根據(jù)以上信息,回答下列問題:
(1)從服藥的50名患者中隨機選出一人,求此人指標的值大于1.7的概率;
(2)設這100名患者中服藥者指標數(shù)據(jù)的方差為,未服藥者指標數(shù)據(jù)的方差為,則 ;(填“>”、“=”或“<” )
(3)對于指標z的改善情況,下列推斷合理的是 .
①服藥4周后,超過一半的患者指標z沒有改善,說明此藥對指標z沒有太大作用;
②在服藥的12周內(nèi),隨著服藥時間的增長,對指標z的改善效果越來越明顯.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)的圖象如圖,現(xiàn)給出下列結(jié)論:①;②;③;④;⑤的兩個根為,,其中正確的結(jié)論有( )
A.①③④B.②④⑤C.①②⑤D.②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,把 繞點逆時針旋轉(zhuǎn)得,點,分別對應點,,且滿足,,三點在同一條直線上,連接交于點,的外接圓圓O與交于、
(1)求證:是圓O切線;
(2)如圖2連接,,若,判斷四邊形的形狀,并說明理由;
(3)在(2)的條件下,若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列正多邊形都滿足BA1=CB1,在正三角形中,我們可推得:∠AOB1=60°;在正方形中,可推得:∠AOB1=90°;在正五邊形中,可推得:∠AOB1=108°,依此類推在正八邊形中,AOB1=____°,在正n(n≥3)邊形中,∠AOB1=____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E為正方形ABCD的邊BC上一動點,以AE為一邊作正方形AEFG,對角線AF交邊CD于H,連EH.①BE+DH=EH;②若E為BC的中點,則H為CD的中點;③EF平分∠HEC;④.其中正確的序號是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖①,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上,請直接寫出線段BE與線段CD的數(shù)量關(guān)系: ;
(2)操作探究
如圖②,將圖①中的△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°α360°),請判斷并證明線段BE與線段CD的數(shù)量關(guān)系;
(3)解決問題
將圖①中的△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°α360°),若DE=2AC,在旋轉(zhuǎn)的過程中,當以A、B、C、D四點為頂點的四邊形是平行四邊形時,請直接寫出旋轉(zhuǎn)角α的度數(shù) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com