8.如圖,點(diǎn)A(a,2)、B(-2,b)都在雙曲線y=$\frac{k}{x}(x<0)$上,點(diǎn)P、Q分別是x軸、y軸上的動(dòng)點(diǎn),當(dāng)四邊形PABQ的周長(zhǎng)取最小值時(shí),PQ所在直線的解析式是y=x+$\frac{3}{2}$,則k=-7.

分析 作A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)C,B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)D,根據(jù)對(duì)稱的性質(zhì)得到C點(diǎn)、D點(diǎn)坐標(biāo).CD分別交x軸、y軸于P點(diǎn)、Q點(diǎn),根據(jù)兩點(diǎn)之間線段最短得此時(shí)四邊形PABQ的周長(zhǎng)最小,然后利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征來(lái)求k的值.

解答 解:作A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)C,B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)D,所以C點(diǎn)坐標(biāo)為(a,-2),D點(diǎn)坐標(biāo)為(2,b),
連結(jié)CD分別交x軸、y軸于P點(diǎn)、Q點(diǎn),此時(shí)四邊形PABQ的周長(zhǎng)最小,
把C點(diǎn)的坐標(biāo)代入y=x+$\frac{3}{2}$得到:-2=a+$\frac{3}{2}$,
解得a=-$\frac{7}{2}$,
則k=2a=-7.
故答案是:-7.

點(diǎn)評(píng) 本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)的解析式;熟練運(yùn)用兩點(diǎn)之間線段最短解決有關(guān)幾何圖形周長(zhǎng)最短的問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(2,0)
(1)寫(xiě)出點(diǎn)A、B的坐標(biāo):A(-1、2)、B(-2、-1);
(2)將△ABC先向右平移4個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度得到△A′B′C′,在直角坐標(biāo)系中畫(huà)出△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)因式分解:x3-4x
(2)解方程組:$\left\{\begin{array}{l}{x+2y=-1}\\{3x-2y=5}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,已知四邊形ABCD的四邊相等,等邊△AMN的頂點(diǎn)M、N分別在BC、CD上,且AM=AB,則∠C為( 。
A.100°B.105°C.110°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,E是BC的中點(diǎn),BC=2AD=$2\sqrt{3}$,△DEF是等邊三角形,連結(jié)BF、AF.
(1)求證:四邊形ADEB為矩形.
(2)求△BEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在10×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線MN對(duì)稱的△A1B1C1(要求A與A1、B與B1、C與C1相對(duì)應(yīng));  
(2)連結(jié)CC1、,BB1,求四邊形BB1CC1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.四邊形ABCD中,AC⊥BD,AB、BC、CD、AD的中點(diǎn)分別是E、F、G、H,則四邊形EFGH一定是( 。
A.矩形B.菱形C.正方形D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知數(shù)據(jù):6,6,x,4的眾數(shù)與平均數(shù)相等,那么這組數(shù)據(jù)的極差是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某移動(dòng)通信公司開(kāi)設(shè)了兩種通信業(yè)務(wù),“全球通”:使用時(shí)首先繳50元月租費(fèi),然后每通話1分鐘,再付話費(fèi)0.4元;“動(dòng)感地帶”:不繳月租費(fèi),每通話1分鐘,付話費(fèi)0.6元(本題的通話費(fèi)均指市內(nèi)通話),若一月通話x分鐘,兩種方式的費(fèi)用分別y1元和y2元.
(1)寫(xiě)出y1和y2與x之間的關(guān)系式;
(2)一個(gè)月內(nèi)通話多少分鐘,兩種通信費(fèi)用相同?
(3)某人估計(jì)一個(gè)月內(nèi)通話300分鐘,應(yīng)選擇哪種通訊業(yè)務(wù)更劃算?

查看答案和解析>>

同步練習(xí)冊(cè)答案