在?ABCD中,過點C作CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉(zhuǎn)90°得到線段EF(如圖①).
(1)在圖①中畫圖探究:
①當(dāng)P1為射線CD上任意一點(P1不與C點重合)時,連接EP1,將線段EP1繞點E逆時針旋轉(zhuǎn)90°得到線段EG1.判斷直線FG1與直線CD的位置關(guān)系并加以證明;
②當(dāng)P2為線段DC的延長線上任意一點時,連接EP2,將線段EP2繞點E逆時針旋轉(zhuǎn)90°得到線段EG2.判斷直線G1G2與直線CD的位置關(guān)系,畫出圖形并直接寫出你的結(jié)論.

解:①直線FG1與直線CD的位置關(guān)系為互相垂直.理由如下:
∵CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉(zhuǎn)90°得到線段EF,
∴∠CEF=90°,
∴EF∥CD,
如圖1,設(shè)直線FG1與直線CD的交點為H,
∵線段EC、EP1分別繞點E逆時針旋轉(zhuǎn)90°依次得到線段EF、EG1
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC,
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,
∴∠G1EF=∠P1EC,
∴△G1EF≌△P1EC,
∴∠G1FE=∠P1CE,
又∵EC⊥CD,
∴∠P1CE=90°,
∴∠G1FE=90°.
∴∠FHC=90°,
∴FG1⊥CD.

②按題目要求所畫圖形見圖1,直線G1G2與直線CD的位置關(guān)系為互相垂直.
分析:①由CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉(zhuǎn)90°得到線段EF,易得EF∥CD,設(shè)直線FG1與直線CD的交點為H,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC,根據(jù)等角的余角相等得到∠G1EF=∠P1EC,易證得△G1EF≌△P1EC,則∠G1FE=∠P1CE,而EC⊥CD有∠P1CE=90°,則∠FHC=90°,即可得到FG1⊥CD;
②與①一樣易證得△G2EF≌△P2EC,則∠G2FE=∠P2CE,而EC⊥CD有∠P2CE=90°,則∠G2FE=90°,則點G1、F、G2共線,于是得到G1G2⊥CD.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,即對應(yīng)角線段,對應(yīng)線段線段;對應(yīng)點的連線段所夾的角等于旋轉(zhuǎn)角;對應(yīng)點到旋轉(zhuǎn)中心的距離相等.也考查了三角形全等的判定與性質(zhì)以及解決探究問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在?ABCD中,過點C作CE⊥CD交AD于點E,將線段EC繞點E按逆時針方向旋轉(zhuǎn)90°得到線段EF.如圖所示.
(1)在圖中畫圖探究:
①當(dāng)p1為線段CD延長線上任意一點時,連接.EP1,將線段EP1繞點E按逆時針方向旋轉(zhuǎn)90°得到線段EG1判斷直線FG1與直線CD的位置關(guān)系,并說明理由;(在圖1中畫)
②當(dāng)P2為線段DC的延長線上任意一點時,連接EP2,將線EP2繞點E按逆時針方向旋轉(zhuǎn)90°得到線段EG2.判斷直線FG2與直線CD的位置關(guān)系,畫出圖形并直接寫出你的結(jié)論.(在圖2中畫)
(2)在①的條件下,連接FP1、P1G1,若EP1=8,AD=6,AE=1,AB:CE=3:4,求△P1G1F的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在□ABCD中,過點C作CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉(zhuǎn)90°得到線段EF,點P為直線CD上一點(不與點C重合).
(1)在圖1中畫圖探究:
當(dāng)點P在CD延長線上時,連結(jié)EP并把EP繞點E逆時針旋轉(zhuǎn)90°得到線段EQ.作直線QF交直線CD于H,求證:QF⊥CD.
(2)探究:結(jié)合(1)中的畫圖步驟,分析線段QH、PH與CE之間是否存在一種特定的數(shù)量關(guān)系?請在下面的空格中寫出你的結(jié)論;若存在,直接填寫這個關(guān)系式.
①當(dāng)點P在CD延長線上且位于H點右邊時,
QH-PH=2CE
QH-PH=2CE

②當(dāng)點P在邊CD上時,
QH+PH=2CE
QH+PH=2CE

(3)若AD=2AB=6,AE=1,連接DF,過P、F兩點作⊙M,使⊙M同時與直線CD、DF相切,求⊙M的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在?ABCD中,過點C作CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉(zhuǎn)90°得到線段EF(如圖①).
(1)在圖①中畫圖探究:
①當(dāng)P1為射線CD上任意一點(P1不與C點重合)時,連接EP1,將線段EP1繞點E逆時針旋轉(zhuǎn)90°得到線段EG1.判斷直線FG1與直線CD的位置關(guān)系并加以證明;
②當(dāng)P2為線段DC的延長線上任意一點時,連接EP2,將線段EP2繞點E逆時針旋轉(zhuǎn)90°得到線段EG2.判斷直線G1G2與直線CD的位置關(guān)系,畫出圖形并直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,過點B作BE⊥CD,垂足為E,連接AE.F為AE上一點,且∠BFE=∠C.
(1)試說明:△ABF∽△EAD;
(2)若AB=8,BE=6,AD=7,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,過點B的直線與對角線AC,邊AD分別交于點E和點F,過點E作EG∥BC,交AB于G,則圖中相似的三角形有
3
3
對.

查看答案和解析>>

同步練習(xí)冊答案