【題目】如圖,某學校旗桿AB旁邊有一個半側的時鐘模型,時鐘的9點和3點的刻度線剛好和地面重合,半圓的半徑2m,旗桿的底端A到鐘面9點刻度C的距離為11m,一天小明觀察到陽光下旗桿頂端B的影子剛好投到時鐘的11點的刻度上,同時測得1米長的標桿的影長1.2m.求旗桿AB的高度.
【答案】旗桿AB的高度(10+)m.
【解析】
設半圓圓心為O,連接OD、CD,可得△OCD是等邊三角形,過點D作DE⊥OC于E,作DF⊥AB于F,可得四邊形AEDF是矩形,然后求出DE的長度,根據(jù)同時同地物高與影長成正比求出BF,然后根據(jù)AB=BF+AF計算即可得解.
解:如圖,設半圓圓心為O,連接OD、CD,
∵點D在11點的刻度上,
∴∠COD=60°,
∴△OCD是等邊三角形,
過點D作DE⊥OC于E,作DF⊥AB于F,則四邊形AEDF是矩形,
∵半圓的半徑2m,
∴DE=2×=,
同時測得1米長的標桿的影長1.2m,
∴,
解得BF=10,
所以AB=BF+AF=(10+)m.
答:旗桿AB的高度(10+)m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c交y軸于點A(0,4),交x軸于點B(4,0),點P是拋物線上一動點,試過點P作x軸的垂線1,再過點A作1的垂線,垂足為Q,連接AP.
(1)求拋物線的函數(shù)表達式和點C的坐標;
(2)若△AQP∽△AOC,求點P的橫坐標;
(3)如圖2,當點P位于拋物線的對稱軸的右側時,若將△APQ沿AP對折,點Q的對應點為點Q′,請直接寫出當點Q′落在坐標軸上時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題提出):有同樣大小正方形256個,拼成如圖1所示的的一個大的正方形.請問如果用一條直線穿過這個大正方形的話,最多可以穿過多少個小正方形?
(問題探究):我們先考慮以下簡單的情況:一條直線穿越一個正方形的情況.(如圖2)
從圖中我們可以看出,當一條直線穿過一個小正方形時,這條直線最多與正方形上、下、左、右四條邊中的兩個邊相交,所以當一條直線穿過一個小正方形時,這條直線會與其中某兩條邊產生兩個交點,并且以兩個交點為頂點的線段會全部落在小正方形內.
這就啟發(fā)我們:為了求出直線最多穿過多少個小正方形,我們可以轉而去考慮當直線穿越由小正方形拼成的大正方形時最多會產生多少個交點.然后由交點數(shù)去確定有多少根小線段,進而通過線段的根數(shù)確定下正方形的個數(shù).
再讓我們來考慮正方形的情況(如圖3):
為了讓直線穿越更多的小正方形,我們不妨假設直線右上方至左下方穿過一個的正方形,我們從兩個方向來分析直線穿過正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的兩條線段;從左右來看,這條直線最多可穿過左右平行的四條線段;這樣直線最多可穿過的大正方形中的六條線段,從而直線上會產生6個交點,這6個交點之間的5條線段,每條會落在一個不同的正方形內,因此直線最多能經過5個小正方形.
(問題解決):
(1)有同樣大小的小正方形16個,拼成如圖4所示的的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過_________個小正方形.
(2)有同樣大小的小正方形256個,拼成的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過___________個小正方形.
(3)如果用一條直線穿過的大正方形的話,最多可以穿過___________個小正方形.
(問題拓展):
(4)如果用一條直線穿過的大長方形的話(如圖5),最多可以穿過個___________小正方形.
(5)如果用一條直線穿過的大長方形的話(如圖6),最多可以穿過___________個小正方形.
(6)如果用一條直線穿過的大長方形的話,最多可以穿過________個小正方形.
(類比探究):
由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個面,類比上面問題解決的方法解決如下問題:
(7)如圖7有同樣大小的小正方體8個,拼成如圖所示的的一個大的正方體.如果用一條直線穿過這個大正方體的話,最多可以穿過___________個小正方體.
(8)如果用一條直線穿過的大正方體的話,最多可以穿過_________個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ、DP交于點O,并分別與邊CD、BC交于點F、E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD<S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的是_____.(請將正確結論的序號填寫在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設點B的橫坐標為x,設點C的縱坐標為y,能表示y與x的函數(shù)關系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自我省深化課程改革以來,某校開設了:A.利用影長求物體高度,B.制作視力表,C.設計遮陽棚,D.制作中心對稱圖形,四類數(shù)學實踐活動課.規(guī)定每名學生必選且只能選修一類實踐活動課,學校對學生選修實踐活動課的情況進行抽樣調查,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息解決下列問題:
(1)本次共調查名學生,扇形統(tǒng)計圖中B所對應的扇形的圓心角為度;
(2)補全條形統(tǒng)計圖;
(3)選修D類數(shù)學實踐活動的學生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機抽取2人做校報設計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=2,D是邊AC的中點,CE⊥BD于E.若F是邊AB上的點,且使△AEF為等腰三角形,則AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實施產業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為,投人市場銷售時,調査市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量 (單位:千克)與銷售單價 (單位: )之間的函數(shù)關系如圖
(1)求與的函數(shù)解析式,并寫出的取值范圍;
(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大,最大利潤是多少?
(3)某農戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.
(1)若∠AOB=45°,OM=4,OQ=,求證:CN⊥OB;
(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.
①問:的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由;
②設菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com