【題目】已知:如圖,矩形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)O關(guān)于直線AD的對(duì)稱點(diǎn)是E,連接AE、DE.
(1)試判斷四邊形AODE的形狀,不必說明理由;
(2)請(qǐng)你連接EB、EC,并證明EB=EC.
【答案】(1) 四邊形AODE是菱形.理由見解析;(2)見解析.
【解析】
(1)利用對(duì)稱的性質(zhì),又因?yàn)樗倪呅?/span>ABCD是矩形,兩個(gè)結(jié)論聯(lián)合起來,可知四邊形AODE是菱形;
(2)先證出∠EAB=∠EDC,再證明△EAB≌△EDC,從而得出EB=EC.
(1)四邊形AODE是菱形.理由如下:
∵點(diǎn)O和點(diǎn)E關(guān)于直線AD對(duì)稱,
∴△AOD≌△AED;
∴OA=AE OD=DE;
∵由矩形ABCD,
∴OA=OD;
∴OA=OD=DE=EA;
∴四邊形AODE是菱形.
(2)連接EB、EC,如圖,
∵四邊形AODE是菱形,
∴AE=ED;
∴∠EAD=∠EDA;
∵四邊形ABCD是矩形,
∴AB=CD,∠BAD=∠CDA=90°;
∴∠EAD+∠BAD=∠EDA+∠CDA;
∴∠EAB=∠EDC;
∴△EAB≌△EDC;
∴EB=EC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,已知AB=BC=10,AC=4,AD為邊BC上的高線,P為邊AD上一點(diǎn),連結(jié)BP,E為線段BP上一點(diǎn),過D、P、E三點(diǎn)的圓交邊BC于F,連結(jié)EF.
(1)求AD的長(zhǎng);
(2)求證:△BEF∽△BDP;
(3)連結(jié)DE,若DP=3,當(dāng)△DEP為等腰三角形時(shí),求BF的長(zhǎng);
(4)把△DEP沿著直線DP翻折得到△DGP,若G落在邊AC上,且DG∥BP,記△APG、△PDG、△GDC的面積分別為S1、S2、S3,則S1:S2:S3的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x+2的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1.過點(diǎn)A作AC⊥y軸交反比例函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接BC.
(1)求反比例函數(shù)的表達(dá)式.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國(guó)家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門就“你某天在校體育活動(dòng)時(shí)間是多少”的問題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問題:
(1)此次抽查的學(xué)生數(shù)為 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)從抽查的學(xué)生中隨機(jī)詢問一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是 ;
(3)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在雙曲線y=的第一象限分支上,AO的延長(zhǎng)線交第三象限的雙曲線于C,AB的延長(zhǎng)線與x軸交于點(diǎn)D,連接CD與y軸交于點(diǎn)E,若AB=BD,S△ODE=,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,過點(diǎn)C作CD⊥AB于點(diǎn)E,交⊙O于點(diǎn)D,延長(zhǎng)AC交DB延長(zhǎng)線于點(diǎn)F,BF=,連接AO、CO.CO與AB相交于點(diǎn)G,∠CGE=3∠CAB,OC=10,將圓心O繞著點(diǎn)B旋轉(zhuǎn)得到點(diǎn)O′,若點(diǎn)O′恰好落△ADF某一邊上時(shí),則OO′的長(zhǎng)度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校初三畢業(yè)生數(shù)學(xué)學(xué)業(yè)水平,隨機(jī)抽取了若干名初三學(xué)生的數(shù)學(xué)測(cè)試成績(jī),按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì)分析,并繪制了如下尚不完整的統(tǒng)計(jì)圖:某校初三畢業(yè)生數(shù)學(xué)學(xué)業(yè)水平人數(shù)條形統(tǒng)計(jì)圖 某校初三畢業(yè)生數(shù)學(xué)學(xué)業(yè)水平人數(shù)分布扇形統(tǒng)計(jì)圖人數(shù)
請(qǐng)根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次抽取的學(xué)生有 名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖1;
(3)在抽取的學(xué)生中C級(jí)人數(shù)所占的百分比是 ;
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校720名初中畢業(yè)生數(shù)學(xué)質(zhì)量檢測(cè)成績(jī)?yōu)?/span>A級(jí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測(cè)得AC、BC與AB的夾角分別為45°與68°,若點(diǎn)C到地面的距離CD為28cm,坐墊中軸E處與點(diǎn)B的距離BE為4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,AB=10,AD=8,G為邊DC上任意一點(diǎn),連結(jié)AG,BG,以AG為直徑作⊙P分別交BG,AB于點(diǎn)E,H,連結(jié)AE,DE.
(1)若點(diǎn)E為弧GH的中點(diǎn),證明:AG=AB.
(2)若△ADE為等腰三角形時(shí),求DG的長(zhǎng).
(3)作點(diǎn)C關(guān)于直線BG的對(duì)稱點(diǎn)C′.
①當(dāng)點(diǎn)C落在線段AG上時(shí),設(shè)線段AG,DE交于點(diǎn)F,求△ADF與△AEF的面積之比;
②在點(diǎn)G的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)C′落在四邊形ADGE內(nèi)時(shí)(不包括邊界),則DG的范圍是 (直接寫出答案)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com