【題目】如圖,在ABC中,已知ABBC10,AC4AD為邊BC上的高線,P為邊AD上一點(diǎn),連結(jié)BP,E為線段BP上一點(diǎn),過D、P、E三點(diǎn)的圓交邊BCF,連結(jié)EF

1)求AD的長(zhǎng);

2)求證:△BEF∽△BDP;

3)連結(jié)DE,若DP3,當(dāng)△DEP為等腰三角形時(shí),求BF的長(zhǎng);

4)把△DEP沿著直線DP翻折得到△DGP,若G落在邊AC上,且DGBP,記△APG、△PDG、△GDC的面積分別為S1、S2、S3,則S1S2S3的值為   

【答案】1AD8,見解析;(2BEF∽△BDP,見解析;(3BF的長(zhǎng)為、,見解析;(4S1S2S3332,見解析.

【解析】

1)設(shè)CD=x,則BD=10-x,在RtABDRtACD中利用勾股定理列方程即可求出x,進(jìn)而求出AD,
2)由圓內(nèi)接四邊形性質(zhì)可知∠BFE=BPD,即可證明BEF∽△BDP
3)因?yàn)?/span>DP=3,由②BP=3,可得分三種情況PE=DPDE=PE、DP=DE利用直角三角形和等腰三角形性質(zhì)先求出EB,再根據(jù)即可求解;

4)連接EGPDM點(diǎn),DGBP和折疊的性質(zhì)可得∠EPD=EDF=PDG,EP=PG=ED=DG,即可得出EBP中點(diǎn),進(jìn)而求出,由,即可求出PM=2,PD=4,AP=4,再利用三角形面積求法即可解答.

解:(1)設(shè)CDx,則BD10x,

RtABDRtACD中,AD2AB2BD2AC2CD2,

依題意得:

解得x6

AD8

2)∵四邊形BFEP是圓內(nèi)接四邊形,

∴∠EFB=∠DPB

又∵∠FBE=∠PDB,

∴△BEF∽△BDP

3)由(1)得BD6

PD3,

BP,

cosPBD,

當(dāng)DEP為等腰三角形時(shí),有三種情況:

.當(dāng)PEDP3 時(shí),BEBPEP,

.當(dāng)DEPE時(shí),EBP中點(diǎn),BE

.當(dāng)DPDE3時(shí),PE2×PDcosBPD,

DP3,當(dāng)DEP為等腰三角形時(shí),BF的長(zhǎng)為、、

4)連接EGPDM點(diǎn),

DGBP

∴∠EPD=∠EDFPDG,

PGDG,

EPPG,EDDG

∴四邊形PEDG是菱形,

EMMG,PMDM,EGAD,

又∵BDAD,

EGBC,

EMBD3MG,,

AM6,

DMPM2,

PD4AP4,

SAPG×4×36,

SPDG×4×36

SGDC4

S1S2S3662332

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市甲、乙、丙三個(gè)景區(qū)是人們節(jié)假日游玩的熱點(diǎn)景區(qū),某學(xué)校對(duì)九(5)班學(xué)生“五一”小長(zhǎng)假隨父母到這三個(gè)景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個(gè)類別A:游三個(gè)景區(qū):B:游兩個(gè)景區(qū);C:游一個(gè)景區(qū):D:不到這三個(gè)景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完全的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖如下:

請(qǐng)結(jié)合圖中信息解答下列問題:

1)九(5)班現(xiàn)有學(xué)生人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求在扇形統(tǒng)計(jì)圖中表示“B類別”的扇形的圓心角的度數(shù);

3)根據(jù)調(diào)查顯示,小劉和小何都選擇“C類別”,求他倆游玩的恰好是同一景區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形OABC中,點(diǎn)B的坐標(biāo)是(4,4),點(diǎn)EF分別在邊BC、BA上,OE2.若∠EOF45°,則F點(diǎn)的縱坐標(biāo)是(  )

A.1B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是一枚質(zhì)地均勻的正四面體形狀的骰子,每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,圖②是一個(gè)正六邊形棋盤,現(xiàn)通過擲骰子的方式玩跳棋游戲,規(guī)則是:將這枚骰子擲出后,看骰子向上三個(gè)面(除底面外)的數(shù)字之和是幾,就從圖②中的A點(diǎn)開始沿著順時(shí)針方向連續(xù)跳動(dòng)幾個(gè)頂點(diǎn),第二次從第一次的終點(diǎn)處開始,按第一次的方法跳動(dòng).

(1)隨機(jī)擲一次骰子,則棋子跳動(dòng)到點(diǎn)C處的概率是   

(2)隨機(jī)擲兩次骰子,用畫樹狀圖或列表的方法,求棋子最終跳動(dòng)到點(diǎn)C處的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB3,點(diǎn)E是對(duì)角線BD上的一點(diǎn),連結(jié)AE,過點(diǎn)EEF垂直AEBC于點(diǎn)F,連結(jié)AF,交對(duì)角線BDG.若三角形AED與四邊形DEFC的面積之比為38,則cosGEF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,點(diǎn)EAB的中點(diǎn),AFBC于點(diǎn)F,聯(lián)結(jié)EF、ED、DF,DEAF于點(diǎn)G,且AE2EGED

(1)求證:DEEF;

(2)求證:BC22DFBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABC為銳角,點(diǎn)M為射線AB上一動(dòng)點(diǎn),連接CM,以點(diǎn)C為直角頂點(diǎn),以CM為直角邊在CM右側(cè)作等腰直角三角形CMN,連接NB

1)如圖1,圖2,若△ABC為等腰直角三角形,

問題初現(xiàn):①當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個(gè)動(dòng)點(diǎn),則線段BN,AM之間的位置關(guān)系是   ,數(shù)量關(guān)系是   ;

深入探究:②當(dāng)點(diǎn)M在線段AB的延長(zhǎng)線上時(shí),判斷線段BN,AM之間的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

2)如圖3,∠ACB≠90°,若當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個(gè)動(dòng)點(diǎn),MPCM交線段BN于點(diǎn)P,且∠CBA45°,BC,當(dāng)BM   時(shí),BP的最大值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,光明中學(xué)一教學(xué)樓頂上豎有一塊高為AB的宣傳牌,點(diǎn)E和點(diǎn)D分別是教學(xué)樓底部和外墻上的一點(diǎn)(A,B,D,E在同一直線上),小紅同學(xué)在距E點(diǎn)9米的C處測(cè)得宣傳牌底部點(diǎn)B的仰角為67°,同時(shí)測(cè)得教學(xué)樓外墻外點(diǎn)D的仰角為30°,從點(diǎn)C沿坡度為1∶的斜坡向上走到點(diǎn)F時(shí),DF正好與水平線CE平行.

(1)求點(diǎn)F到直線CE的距離(結(jié)果保留根號(hào));

(2)若在點(diǎn)F處測(cè)得宣傳牌頂部A的仰角為45°,求出宣傳牌AB的高度(結(jié)果精確到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,矩形ABCD的對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)O關(guān)于直線AD的對(duì)稱點(diǎn)是E,連接AEDE

1)試判斷四邊形AODE的形狀,不必說明理由;

2)請(qǐng)你連接EBEC,并證明EBEC

查看答案和解析>>

同步練習(xí)冊(cè)答案