【題目】問題背景:在△ABC中,AB,BC,AC三邊的長分別為,,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上:________.

思維拓展:

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別為a,a,a(a>0),請利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

探索創(chuàng)新:

(3)若△ABC三邊的長分別為,,(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法畫出示意圖并求出這三角形的面積.

【答案】(1);(2)3a2;(3)7mn

【解析】

(1)的面積

(2)是直角邊長為,的直角三角形的斜邊;是直角邊長為的直角三角形的斜邊;是直角邊長為的直角三角形的斜邊,把它整理為一個(gè)矩形的面積減去三個(gè)直角三角形的面積;

(3)結(jié)合(1),(2)易得此三角形的三邊分別是直角邊長為,的直角三角形的斜邊;直角邊長為,的直角三角形的斜邊;直角邊長為,的直角三角形的斜邊.同樣把它整理為一個(gè)矩形的面積減去三個(gè)直角三角形的面積.

解:(1);

故答案為:

(2)如圖1,在邊長為a的正方形網(wǎng)格中,△ABC即為所求作三角形,S△ABC=2a×4a-×2a×2a-×2a×a-×4a×a=3a2 

(3)如圖2,在每個(gè)小長方形的長為m、寬為n的網(wǎng)格中,△ABC即為所求作三角形,其中AB=、AC=、BC=,S△ABC=4m×4n-×m×4n-×3m×2n-×4m×2n=7mn.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動(dòng)了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五一”長假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客 萬人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計(jì)2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計(jì)有多少萬人會(huì)選擇去E景點(diǎn)旅游?

(3)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔B的正西方向A處,且A處與燈塔B相距60海里,輪船沿東北方向勻速航行,到達(dá)位于燈塔B的北偏東l5°方向上的C處.

(1)求∠ACB的度數(shù);

(2)求燈塔B到C處的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點(diǎn),現(xiàn)有經(jīng)過點(diǎn)A的直線l:y=kx+b1與y軸交于點(diǎn)C,與拋物線的另個(gè)交點(diǎn)為D.

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)D在第二象限且滿足CD=5AC,求此時(shí)直線1的解析式;在此條件下,點(diǎn)E為直線1下方拋物線上的一點(diǎn),求ACE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);

(3)如圖,設(shè)P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點(diǎn)Q在拋物線上,若以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請直接寫出點(diǎn)Q的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,分別以ACBC為邊長,在三角形外作正方形ACFG和正方形BCED.若AC4AB6,則EF______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠1=∠2,EG平分∠AEC

1)如圖①,∠MAE45°,∠FEG15°,∠NCE75°.求證:ABCD;

2)如圖②,∠MAE140°,∠FEG30°,當(dāng)∠NCE   °時(shí),ABCD

3)如圖②,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時(shí),ABCD

4)如圖③,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時(shí),ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中的老師工作很忙,但初一年級很多數(shù)學(xué)老師仍然堅(jiān)持鍛煉身體,比如張老師就經(jīng)常堅(jiān)持飯后走一走.某天晚飯后他從學(xué)校慢步到附近的中央公園,在公園里休息了一會(huì)后,因?qū)W校有事,快步趕回學(xué)校.下面能反映當(dāng)天張老師離學(xué)校的距離y與時(shí)間x的關(guān)系的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察猜想

如圖①,點(diǎn)BA、C在同一條直線上,DB⊥BC,EC⊥BC∠DAE=90°,AD=AE,BC、BD、CE之間的數(shù)量關(guān)系為

(2)問題解決

如圖②,Rt△ABC,∠ABC=90°CB=8,AB=4,以AC為直角邊向外作等腰Rt△DAC連接BD,BD的長。

(3)拓展延伸

如圖③,在四邊形ABCD,∠ABC=∠ADC=90°CB=8.AB=4DC=DA,則BD=

查看答案和解析>>

同步練習(xí)冊答案