【題目】如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.易證:CE=CF.

(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE,BE,GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運(yùn)用(1)中解答所積累的經(jīng)驗(yàn)和知識(shí),完成下面兩題:
①如圖2,在四邊形ABCD中∠B=∠D=90°,BC=CD,點(diǎn)E,點(diǎn)G分別是AB邊,AD邊上的動(dòng)點(diǎn).若∠BCD=α,∠ECG=β,試探索當(dāng)α和β滿足什么關(guān)系時(shí),圖1中GE,BE,GD三線段之間的關(guān)系仍然成立,并說(shuō)明理由.
②在平面直角坐標(biāo)中,邊長(zhǎng)為1的正方形OABC的兩頂點(diǎn)A,C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖3).設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?若不變,請(qǐng)直接寫出結(jié)論.

【答案】
(1)

解:GE=BE+GD,理由如下:

∵四邊形ABCD是正方形,F(xiàn)是AD延長(zhǎng)線上一點(diǎn),

∴BC=DC,∠FDC=∠EBC=90°,

在△EBC和△FDC中, ,

∴△EBC≌△FDC(SAS),

∴∠DCF=∠BCE,CE=CF,

∵∠GCE=45°,

∴∠BCE+∠DCG=90°﹣45°=45°,

∴∠DCG+∠DCF=45°,

∴∠ECG=∠FCG,

在△ECG和△FCG中,

∴△ECG≌△FCG(SAS),

∴EG=GF,

∴GE=BE+GD


(2)

解:①α=2β時(shí),GE=BE+GD;理由如下:

延長(zhǎng)AD到F點(diǎn),使DF=BE,連接CF,如圖(2)所示:

∵∠B=∠D=90°,

∴∠B=∠FDC=90°,

在△EBC和△FDC中, ,

∴△EBC≌△FDC(SAS),

∴∠DCF=∠BCE,CE=CF,

∴∠BCE+∠DCG=∠GCF,

當(dāng)α=2β時(shí),∠ECG=∠FCG,

在△ECG和△FCG中, ,

∴△ECG≌△FCG(SAS),

∴EG=GF,

∴GE=BE+GD;

②在旋轉(zhuǎn)正方形OABC的過(guò)程中,P值無(wú)變化;

延長(zhǎng)BA交y軸于E點(diǎn),如圖(3)所示:

則∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,

∴∠AOE=∠CON.

又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.

在△OAE和△OCN中,

∴△OAE≌△OCN(ASA).

∴OE=ON,AE=CN.

在△OME和△OMN中,

∴△OME≌△OMN(SAS).

∴MN=ME=AM+AE.

∴MN=AM+CN,

∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.

∴在旋轉(zhuǎn)正方形OABC的過(guò)程中,P值無(wú)變化.


【解析】(1)由SAS證得△EBC≌△FDC,再由SAS證得△ECG≌△FCG,可得到EG=FG,即可得出結(jié)果;(2)①延長(zhǎng)AD到F點(diǎn),使DF=BE,連接CF,可證△EBC≌△FDC,結(jié)合條件可證得△ECG≌△FCG,故EG=GF,可得出結(jié)論;②延長(zhǎng)BA交y軸于E點(diǎn),可證得△OAE≌△OCN,進(jìn)一步可證得△OME≌△OMN,可求得MN=AM+AE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)n為正整數(shù),a2n=3,計(jì)算(3a3n)2÷27a4n的值;

(2)已知(a-2)2+(b+2)2+(c-3)2=0,a2b3c4·(3ab2c2)2÷6(a2b3c4)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2a1a5是正數(shù)m的平方根,則m的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.平面直角坐標(biāo)系xOy的原點(diǎn)O在格點(diǎn)上,x軸、y軸都在格線上.線段AB的兩個(gè)端點(diǎn)也在格點(diǎn)上.

(1)若將線段AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段A1B1 , 試在圖中畫(huà)出線段A1B1
(2)若線段A2B2與線段A1B1關(guān)于y軸對(duì)稱,請(qǐng)畫(huà)出線段A2B2
(3)若點(diǎn)P是此平面直角坐標(biāo)系內(nèi)的一點(diǎn),當(dāng)點(diǎn)A、B1、B2、P四邊圍成的四邊形為平行四邊形時(shí),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD為公共邊的三角形是____________;∠EFB____________的內(nèi)角;△BCE,BE所對(duì)的角是____________,∠CBE所對(duì)的邊是____________;∠A為公共角的三角形是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式運(yùn)算正確的是( 。
A.2a2+3a2=5a4
B.(2ab22=4a2b4
C.2a6÷a3=2a2
D.(a23=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)P1(﹣1y1),P2(﹣2,y2),P31y3)都在函數(shù)yx22x的圖象上,則下列判斷正確的是( 。

A.y2y1y3B.y1y2y3C.y1y2y3D.y2y1y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m2-5m-14=0,求(m-1)(2m-1-m+12+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛(ài)哪一類節(jié)目。ū徽{(diào)查的學(xué)生只選一類并且沒(méi)有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問(wèn)題:

(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該中學(xué)有3000名學(xué)生,請(qǐng)估計(jì)該校喜愛(ài)電視劇節(jié)目的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案