【題目】“疾馳臭豆腐”是長沙知名地方小吃,某分店經(jīng)理發(fā)現(xiàn),當每份臭豆腐的售價為元時,每天能賣出份;當每份臭豆腐的售價每增加元時,每天就會少賣出份,設(shè)每份臭豆腐的售價增加元時,一天的營業(yè)額為元.

1)求的函數(shù)關(guān)系式(不要求寫出的取值范圍);

2)考慮到顧客可接受價格份的范圍是,且為整數(shù),不考慮其他因素,則該分店的臭豆腐每份多少元時,每天的臭豆腐營業(yè)額最大?最大營業(yè)額是多少元?

【答案】(1);(2)每份元時,營業(yè)額最大,最大營業(yè)額是

【解析】

1)營業(yè)額=賣的份數(shù)×每份價格,即可求解;
26≤a≤9,即0≤x≤3,y=(x6)(50040x)=40x6)(x12.5),函數(shù)的對稱軸為:x3.25,當x3.25時,函數(shù)隨x的增大而增大,即可求解.

解:(1)由題意得:;

2,即,

,

函數(shù)的對稱軸為:,

,函數(shù)有最大值,

時,函數(shù)隨的增大而增大,而

時,最大,此時,最大值為:,

即每份元時,營業(yè)額最大,最大營業(yè)額是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某學(xué)生在旗桿EF與實驗樓CD之間的A處,測得∠EAF=60°,然后向左移動10米到B處,測得∠EBF=30°,∠CBD=45°,tanCAD=

1)求旗桿EF的高(結(jié)果保留根號);

2)求旗桿EF與實驗樓CD之間的水平距離DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于AB兩點,A點的坐標為,B點的坐標為,連接,過B軸,垂足為C

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)在射線上是否存在一點D,使得是直角三角形,求出所有可能的D點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yx軸交于A,CAC的左側(cè)),點B在拋物線上,其橫坐標為1,連接BC,BO,點FOB中點.

1)求直線BC的函數(shù)表達式;

2)若點D為拋物線第四象限上的一個動點,連接BD,CD,點Ex軸上一動點,當BCD的面積的最大時,求點D的坐標,及|FEDE|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸=–1,P為拋物線上第二象限的一個動點.

(1)求拋物線的解析式并寫出其頂點坐標;

(2)當點P的縱坐標為2時,求點P的橫坐標;

(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在雙曲線y上,點B在雙曲線yk≠0)上,ABx軸,過點AADx軸于D.連接OB,與AD相交于點C,若AC=2CD,則k__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1CD交于點O,則四邊形AB1OD的面積是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線yax)(x+)與x軸交于AB兩點,與y軸交于點C,直線DE是拋物線的對稱軸,點Dx軸上,點E在拋物線上,直線ykx+過點A、C

1)求拋物線的解析式;

2)點P是第二象限對稱軸左側(cè)拋物線上一點,過點PPQAC交對稱軸于點Q,設(shè)點P的橫坐標為t,線段QD的長為d,求dt的函數(shù)解析式(不要求寫出自變量t的取值范圍);

3)在(2)的條件下,直線AC與對稱軸交于點F,點M在對稱軸ED上,連接AMAE,∠AMD2EAM,過點AAGAM交過點D平行于AE的直線于點G,點N是線段BP延長線上一點,連接AN、MN、NF,若四邊形NMGA與四邊形NFDA的面積相等,且FNAM,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時,配方有錯誤的是(

A.化為B.化為

C.化為D.化為

查看答案和解析>>

同步練習(xí)冊答案