【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)F為OB中點(diǎn).
(1)求直線BC的函數(shù)表達(dá)式;
(2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BD,CD,點(diǎn)E為x軸上一動(dòng)點(diǎn),當(dāng)△BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FE﹣DE|的最大值.
【答案】(1)y=x+;(2)D(,﹣),|FE﹣DE|的最大值為.
【解析】
(1)先求出B、C的坐標(biāo),利用待定系數(shù)法求解即可;
(2)三角形面積最值轉(zhuǎn)換成求DH的最大值,然后利用二次函數(shù)的求最值問(wèn)題解決點(diǎn)D的坐標(biāo),|FE﹣DE|的最大值,可將點(diǎn)D和點(diǎn)F轉(zhuǎn)換到x軸的同一側(cè),再利用共線時(shí)差值最大求出線段長(zhǎng)度即可.
(1)在y=中,當(dāng)y=0,解得:x1=,x2=,
∴A(,0),C(,0)
當(dāng)x=1時(shí),y=2
即B(1,2),
設(shè)直線BC的解析式為y=kx+b
得:,
解得,
直線BC的解析式為y=x+.
(2)設(shè)點(diǎn)D(m,),則點(diǎn)H(m,m+)
過(guò)點(diǎn)D作DH⊥x軸交BC于點(diǎn)H,
HD=m+﹣()
=,
S△BCD=×DH×(xC-xB)
=DH,
∴當(dāng)m=時(shí),HD取最大值,此時(shí)S△BCD的面積取最大值.
此時(shí)D(,﹣).
作D關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D′
則D′(,),
連接D′H交x軸于一點(diǎn)E,此時(shí)|D′E﹣FE|最大,最大值為D′F的長(zhǎng)度,
∵F(,)
∴D′F=,
即|FE﹣DE|的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸上.
(1)求m的值及這個(gè)二次函數(shù)的解析式;
(2)若P(,0) 是軸上的一個(gè)動(dòng)點(diǎn),過(guò)P作軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).
①當(dāng)0<< 3時(shí),求線段DE的最大值;
②若直線AB與拋物線的對(duì)稱(chēng)軸交點(diǎn)為N,問(wèn)是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地有A,B,C三條不同的公交線路.為了解早高峰期間這三條線路上的公交車(chē)從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車(chē),收集了這些班次的公交車(chē)用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:
公交車(chē)用時(shí) 公交車(chē)用時(shí)的頻數(shù) 線路 | 合計(jì) | ||||
A | 59 | 151 | 166 | 124 | 500 |
B | 50 | 50 | 122 | 278 | 500 |
C | 45 | 265 | 167 | 23 | 500 |
早高峰期間,乘坐_________(填“A”,“B”或“C”)線路上的公交車(chē),從甲地到乙地“用時(shí)不超過(guò)45分鐘”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(2k+1)x+4k-3=0,當(dāng)Rt△ABC的斜邊a=,且兩直角邊b和c恰好是這個(gè)方程的兩個(gè)根時(shí),求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)交x軸于A,B(1,0)兩點(diǎn),交y軸于點(diǎn)C,一次函數(shù)y=x+3的圖象交坐標(biāo)軸于A,D兩點(diǎn),E為直線AD上一點(diǎn),作EF⊥x軸,交拋物線于點(diǎn)F
(1)求拋物線的解析式;
(2)若點(diǎn)F位于直線AD的下方,請(qǐng)問(wèn)線段EF是否有最大值?若有,求出最大值并求出點(diǎn)E的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=,經(jīng)過(guò)點(diǎn)A(1,3)、B(0,1),過(guò)點(diǎn)A作x軸的平行線交拋物線于另一點(diǎn)C.
(1)求拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)如圖,點(diǎn)G是BC上方拋物線上的一個(gè)動(dòng)點(diǎn),分別過(guò)點(diǎn)G作GH⊥BC于點(diǎn)H、作GE⊥x軸于點(diǎn)E,交BC于點(diǎn)F,在點(diǎn)G運(yùn)動(dòng)的過(guò)程中,△GFH的周長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“疾馳臭豆腐”是長(zhǎng)沙知名地方小吃,某分店經(jīng)理發(fā)現(xiàn),當(dāng)每份臭豆腐的售價(jià)為元時(shí),每天能賣(mài)出份;當(dāng)每份臭豆腐的售價(jià)每增加元時(shí),每天就會(huì)少賣(mài)出份,設(shè)每份臭豆腐的售價(jià)增加元時(shí),一天的營(yíng)業(yè)額為元.
(1)求與的函數(shù)關(guān)系式(不要求寫(xiě)出的取值范圍);
(2)考慮到顧客可接受價(jià)格元份的范圍是,且為整數(shù),不考慮其他因素,則該分店的臭豆腐每份多少元時(shí),每天的臭豆腐營(yíng)業(yè)額最大?最大營(yíng)業(yè)額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉善縣將開(kāi)展以“珍愛(ài)生命,鐵拳護(hù)航”為主題的交通知識(shí)競(jìng)賽,某校對(duì)參加選拔賽的若干名同學(xué)的成績(jī)按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的頻數(shù)統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖
成績(jī)等級(jí) | 頻數(shù)(人數(shù)) | 頻率 |
A | 4 | 0.08 |
B | m | 0.52 |
C | n | |
D | ||
合計(jì) | 1 |
(1)求m= ,n= ;
(2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)”所對(duì)應(yīng)圓心角的度數(shù);
(3)“A等級(jí)”的4名同學(xué)中有3名男生和1名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全縣比賽,請(qǐng)用樹(shù)狀圖法或列表法求出恰好選中“一男一女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)為線段外一動(dòng)點(diǎn),且,,填空:當(dāng)點(diǎn)位于__________時(shí),線段的長(zhǎng)取到最大值__________,且最大值為;(用含、的式子表示).
(2)如圖2,若點(diǎn)為線段外一動(dòng)點(diǎn),且,,分別以,為邊,作等邊和等邊,連接,.
①圖中與線段相等的線段是線段__________,并說(shuō)明理由;
②直接寫(xiě)出線段長(zhǎng)的最大值為__________.
(3)如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)為線段外一動(dòng)點(diǎn),且,,,請(qǐng)直接寫(xiě)出線段長(zhǎng)的最大值為__________,及此時(shí)點(diǎn)的坐標(biāo)為__________.(提示:等腰直角三角形的三邊長(zhǎng)、、滿足)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com