【題目】如圖,△ABC在平面直角坐標系內,頂點的坐標分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使點C移到點C1(﹣2,﹣4),畫出平移后的△A1B1C1,并寫出點A1,B1的坐標;
(2)將△ABC繞點(0,3)旋轉180°,得到△A2B2C2,畫出旋轉后的△A2B2C2;
(3)求(2)中的點C旋轉到點C2時,點C經過的路徑長(結果保留π).
【答案】(1)畫圖見解析, A1(﹣4,﹣1),B1(﹣2,0);(2)畫圖見解析;(3)點C經過的路徑長為2π.
【解析】(1)根據點C移到點C1(-2,-4),可知向下平移了5個單位,分別作出A、B、C的對應點A1、B1、C1即可解決問題;
(2)根據中心對稱的性質,作出A、B、C的對應點A2、B2、C2即可;
(3)利用勾股定理計算CC2,可得半徑為2,根據圓的周長公式計算即可.
(1)如圖所示,則△A1B1C1為所求作的三角形,
∴A1(-4,-1),B1(-2,0);
(2)如圖所示,則△A2B2C2為所求作的三角形,
(3)點C經過的路徑長:是以(0,3)為圓心,以CC2為直徑的半圓,
由勾股定理得:CC2=,
∴點C經過的路徑長:.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經過A,D兩點,交AB于點E,交AC于點F
(1)求證:BC是⊙O的切線;
(2)若⊙O半徑是2cm,F是弧AD的中點,求陰影部分的面積(結果保留π和根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據圖中信息回答下列問題:
(1)接受問卷調查的學生共有______人,條形統(tǒng)計圖中m的值為______;
(2)扇形統(tǒng)計圖中“了解很少”部分所對應扇形的圓心角的度數為______;
(3)若該中學共有學生1800人,根據上述調查結果,可以估計出該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數為______人;
(4)若從對校園安全知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點在線段上,在的同側作等腰和等腰,與、分別交于點、.對于下列結論:
①;②;③.其中正確的是( )
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD長與寬的比為3:2,點E,F分別在邊AB、BC上,tan∠1=,tan∠2=,則cos(∠1+∠2)=( 。
A.B.C.D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數:.
(1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com