精英家教網 > 初中數學 > 題目詳情

【題目】如圖,ABC在平面直角坐標系內,頂點的坐標分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).

(1)平移ABC,使點C移到點C1(﹣2,﹣4),畫出平移后的A1B1C1,并寫出點A1,B1的坐標;

(2)ABC繞點(0,3)旋轉180°,得到A2B2C2,畫出旋轉后的A2B2C2;

(3)(2)中的點C旋轉到點C2時,點C經過的路徑長結果保留π).

【答案】(1)畫圖見解析, A1(﹣4,﹣1),B1(﹣2,0);(2)畫圖見解析;(3)C經過的路徑長為2π.

【解析】(1)根據點C移到點C1(-2,-4),可知向下平移了5個單位,分別作出A、B、C的對應點A1、B1、C1即可解決問題;

(2)根據中心對稱的性質,作出A、B、C的對應點A2、B2、C2即可;

(3)利用勾股定理計算CC2,可得半徑為2,根據圓的周長公式計算即可.

1)如圖所示,則A1B1C1為所求作的三角形,

A1(-4,-1),B1(-2,0);

(2)如圖所示,則A2B2C2為所求作的三角形,

(3)點C經過的路徑長:是以(0,3)為圓心,以CC2為直徑的半圓,

由勾股定理得:CC2=,

∴點C經過的路徑長:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AD平分∠BAC,交BC于點D,點OAB上,O經過AD兩點,交AB于點E,交AC于點F

1)求證:BCO的切線;

2)若O半徑是2cmF是弧AD的中點,求陰影部分的面積(結果保留π和根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校園安全越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據圖中信息回答下列問題:

1)接受問卷調查的學生共有______人,條形統(tǒng)計圖中m的值為______;

2)扇形統(tǒng)計圖中了解很少部分所對應扇形的圓心角的度數為______;

3)若該中學共有學生1800人,根據上述調查結果,可以估計出該學校學生中對校園安全知識達到非常了解基本了解程度的總人數為______人;

4)若從對校園安全知識達到非常了解程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉90°后得到A2B2C2,請畫出A2B2C2

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點在線段上,在的同側作等腰和等腰、分別交于點.對于下列結論:

;.其中正確的是(

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,sinB,點DBC邊上,∠ADC45°,DC6tanBAD___

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P③作AP射線,交邊CD于點Q,若DQ=2QCBC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD長與寬的比為32,點E,F分別在邊AB、BC上,tan1,tan2,則cos(∠1+2)=( 。

A.B.C.D.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件,出廠價為每件,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數:

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為,那么政府這個月為他承擔的總差價為多少元?

2)設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

同步練習冊答案