【題目】在平行四邊形ABCD中,AD=13,BAD和ADC的角平分線分別交BC于E,F,且EF=6,則平行四邊形的周長是____________________
【答案】45或33.
【解析】
需要分兩種情況進行討論.由于平行四邊形的兩組對邊互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,則BE=AB;同理可得,CF=CD=5.而AB+CD=BE+CF=BC+FE=13+6=19,或 AB+CD=BE+CF=BC-FE=13-6=7由此可以求周長.
解:分兩種情況,(1)如圖,當AE、DF相交時:
∵AE平分∠BAD,
∴∠1=∠2
∵平行四邊形ABCD中,AD∥BC,BC=AD=13,EF=6
∴∠1=∠3
∴∠2=∠3
∴AB=BE
同理CD=CF
∴AB+CD=BE+CF=BC+FE=13+6=19
∴平行四邊形ABCD的周長= AB+CD+ BC+AD=19+13×2=45;
(二)當AE、DF不相交時:
由角平分線和平行線,同(1)方法可得AB=BE,CD=CF
∴AB+CD=BE+CF=BC-FE=13-6=7
∴平行四邊形ABCD的周長= AB+CD+ BC+AD=7+13×2=33;
故答案為:45或33.
科目:初中數(shù)學 來源: 題型:
【題目】父親告訴小明:“距離地面越高,溫度越低”,并給小明出示了下面的表格:
距離地面高度(千米) | 0 | 1 | 2 | 3 | 4 | 5 |
溫度(℃) | 20 | 14 | 8 | 2 | -4 | -10 |
根據(jù)表中,父親還給小明出了下面幾個問題,你和小明一起回答.
(1)表中自變量是________;因變量是_________;在地面上(即時)時,溫度是_________℃;
(2)如果用表示距離地面的高度,用表示溫度,則滿足與關系的式子為_____________;
(3)計算出距離地面6千米的高空溫度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一個邊長為的正方形圖形分割成四部分,觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,請用兩種方法表示該陰影圖形的總面積
方法1:_________________方法2__________________;
由此可得等量關系:______________________________;
應用該等量關系解決下列問題:
(2)若圖中的a,b()滿足,,求的值;
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某儲運部緊急調撥一批物資,調進物資共用4小時,調進物資2小時后開始調出物資(調進物資與調出物資的速度均保持不變).儲運部庫存物資S(噸)與時間t(小時)之間的函數(shù)關系如圖所示,這批物資從開始調進到全部調出需要的時間是( )
A. 4小時B. 4.4小時C. 4.8小時D. 5小時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請直接寫出點B關于點A對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點的坐標;
(3)請直接寫出:以A,B,C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.若△BCD是等腰三角形,則四邊形BDFC的面積為_______________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了抗擊新冠病毒,保護學生和教師的生命安全,新希望中學元購進甲、乙兩種醫(yī)用口罩共計盒,甲,乙兩種口罩的售價分別是元/盒,元/盒;甲,乙兩 種口罩的數(shù)量分別是個/盒,個/盒.
(1)求新希望中學甲、乙兩種口罩各購進了多少盒?
(2)按照教育局要求,學校必須儲備兩周的用量,新希望中學師生共計人,每人每天個口罩,問購買的口罩數(shù)量是否能滿足教育局的要求?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩地相距72千米,李磊騎自行車往返兩地一共用了7小時,已知他去時的平均速度比返回時的平均速度快,求李磊去時的平均速度是多少?
小蕓同學解法如下:
解:設李磊去時的平均速度是x千米/時,則返回時的平均速度是(1-)x千米/時,由題意得:+=7,…
你認為小蕓同學的解法正確嗎?若正確,請寫出該方程所依據(jù)的等量關系,并完成剩下的步驟;若不正確,請說明原因,并完整地求解問題.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com