【題目】如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.若△BCD是等腰三角形,則四邊形BDFC的面積為_______________。
【答案】5或20.
【解析】
先證明四邊形BDFC是平行四邊形;當△BCD是等腰三角形求面積時,需分①BC=BD時,利用勾股定理列式求出AB,然后利用平行四邊形的面積公式列式計算即可得解;②BC=CD時,過點C作CG⊥AF于G,判斷出四邊形AGCB是矩形,再根據(jù)矩形的對邊相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四邊形的面積列式計算即可得解;③BD=CD時,BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=4,矛盾.
證明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
在△BEC與△FED中,
∴△BEC≌△FED,
∴BE=FE,
又∵E是邊CD的中點,
∴CE=DE,
∴四邊形BDFC是平行四邊形;
(1)BC=BD=5時,由勾股定理得,AB===,
所以,四邊形BDFC的面積=5×=5 ;
(2)BC=CD=5時,過點C作CG⊥AF于G,則四邊形AGCB是矩形,
所以,AG=BC=5,
所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,
所以,四邊形BDFC的面積=4×5=20;
(3)BD=CD時,BC邊上的中線應(yīng)該與BC垂直,從而得到BC=2AD=4,矛盾,此時不成立;
綜上所述,四邊形BDFC的面積是5或20.
故答案為:5或20.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下面的說理過程補充完整
已知:如圖,DE∥BC,∠ADE=∠EFC,求證:∠1=∠2.
證明:∵DE∥BC(已知)
∴∠ADE= ( 。
∵∠ADE=∠EFC(已知)
∴ = ( 。
∴DB∥EF ( 。
∴∠1=∠2 ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=﹣2x﹣3與y2=x+2.
(1)在同一平面直角坐標系中,畫出這兩個函數(shù)的圖象;
(2)根據(jù)圖象,不等式﹣2x﹣3>x+2的解集為多少?
(3)求兩圖象和y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AD=13,BAD和ADC的角平分線分別交BC于E,F,且EF=6,則平行四邊形的周長是____________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,平分,點A、B、C分別是射線OM、OE、ON上的動點(點A、B、C不與點重合),且,連接AC交射線OE于點D.
(1)求的度數(shù);
(2)當中有兩個相等的角時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A在y軸上,頂點D在反比例函數(shù)y= (x>0)的圖象上,已知點B的坐標是( , ),則k的值為( )
A.4
B.6
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為CD上一點,DE:EC=2:3,連接AE,BE,BD,且AE,BD交于點F,則S△DEF:S△EBF:S△ABF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°.
(1)如圖1,點E為線段AB的中點,連接DE,CE,若AB=4,求線段EC的長;
(2)如圖2,M為線段AC上一點(M不與A,C重合),以AM為邊,構(gòu)造如圖所示等邊三角形AMN,線段MN與AD交于點G,連接NC,DM,Q為線段NC的中點,連接DQ,MQ,求證:DM=2DQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點,點A的坐標為(0,1),點B在第一象限內(nèi),點C是二次函數(shù)圖象的頂點,點M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點,過點B作軸的垂線,垂足為N,且S△AMO:S四邊形AONB=1:48.
(1)求直線AB和直線BC的解析式;
(2)點P是線段AB上一點,點D是線段BC上一點,PD∥x軸,射線PD與拋物線交于點G,過點P作PE⊥x軸于點E,PF⊥BC于點F.當PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+ BH的值最小,求點H的坐標和GH+ BH的最小值;
(3)如圖2,直線AB上有一點K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點A,點C的對應(yīng)點分別為點A′,點C′;當△A′C′K是直角三角形時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com