【題目】如圖,邊長為2的正方形ABCD的頂點A在y軸上,頂點D在反比例函數y= (x>0)的圖象上,已知點B的坐標是( , ),則k的值為( )
A.4
B.6
C.8
D.10
【答案】C
【解析】如圖,過點B作BE⊥y軸于E,過點D作DF⊥y軸于F,
在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
∵∠DAF+∠ADF=90°,
∴∠BAE=∠ADF,
在△ABE和△DAF中,
,
∴△ABE≌△DAF(AAS),
∴AF=BE,DF=AE,
∵正方形的邊長為2,B( , ),
∴BE= ,AE= = ,
∴OF=OE+AE+AF= + + =5,
∴點D的坐標為( ,5),
∵頂點D在反比例函數y= (x>0)的圖象上,
∴k=xy= ×5=8.
所以答案是:C.
【考點精析】通過靈活運用正方形的性質,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形即可以解答此題.
科目:初中數學 來源: 題型:
【題目】已知第三象限的點P(x,y)滿足,.
(1)求點P的坐標;
(2)①點P到x軸的距離為_______;
②把點P向右平移m個單位后得到P1,則點P1到x軸的距離為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一個邊長為的正方形圖形分割成四部分,觀察圖形,解答下列問題:
(1)根據圖中條件,請用兩種方法表示該陰影圖形的總面積
方法1:_________________方法2__________________;
由此可得等量關系:______________________________;
應用該等量關系解決下列問題:
(2)若圖中的a,b()滿足,,求的值;
(3)若,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請直接寫出點B關于點A對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點的坐標;
(3)請直接寫出:以A,B,C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.若△BCD是等腰三角形,則四邊形BDFC的面積為_______________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了抗擊新冠病毒,保護學生和教師的生命安全,新希望中學元購進甲、乙兩種醫(yī)用口罩共計盒,甲,乙兩種口罩的售價分別是元/盒,元/盒;甲,乙兩 種口罩的數量分別是個/盒,個/盒.
(1)求新希望中學甲、乙兩種口罩各購進了多少盒?
(2)按照教育局要求,學校必須儲備兩周的用量,新希望中學師生共計人,每人每天個口罩,問購買的口罩數量是否能滿足教育局的要求?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延長CA到O,使AO=AC,以O為圓心,OA長為半徑作⊙O交BA延長線于點D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標xOy中,正比例函數y=kx的圖象與反比例函數y= 的圖象都經過點A(2,﹣2).
(1)分別求這兩個函數的表達式;
(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數圖象在第四象限內的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com