【題目】如何求tan75°的值?按下列方法作圖可解決問題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點(diǎn)M,在射線BM上截取線段BD,使BD=AB,連接AD,依據(jù)此圖可求得tan75°的值為( 。
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD為矩形,以CD為直徑作半圓,矩形的另外三邊分別與半圓相切,沿著折痕DF折疊該矩形,使得點(diǎn)C的對(duì)應(yīng)點(diǎn)E落在AB邊上,若AD=2,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車,計(jì)劃購買A型和B型新能源公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需300萬元;若購買A型公交車2輛,B型公交車1輛,共需270萬元,
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點(diǎn),連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有足夠多的除顏色外都相同的球供你選用,還有一個(gè)最多只能裝10個(gè)球的不透明袋子.
(1)請(qǐng)你設(shè)計(jì)一個(gè)摸球游戲,使得從袋中任意摸出1個(gè)球,摸得紅球的概率為,則應(yīng)往袋中如何放球;
(2)若袋中裝有2個(gè)紅球和2個(gè)白球,攪勻后從袋中摸出一個(gè)球后,不放回,然后再摸出一個(gè)球,則請(qǐng)用列表或畫樹形圖的方法列出所有等可能情況,并求出兩次摸出的球都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作發(fā)現(xiàn))
如圖①,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)請(qǐng)按要求畫圖:將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B=____.
(問題解決)
(3)如圖②,在等邊三角形ABC中,AC=7,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過觀察、分析、思考,對(duì)上述問題形成了如下想法:
想法一:將△APC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.…
請(qǐng)參考小明同學(xué)的想法,完成該問題的解答過程.(一種方法即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x+b的圖象經(jīng)過點(diǎn)A(0,1),與反比例函數(shù)y=(x>0)的圖象交于B(m,2).
(1)求k和b的值;
(2)在雙曲線y=(x>0)上是否存在點(diǎn)C,使得△ABC為等腰直角三角形?若存在,求出點(diǎn)C坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)的圖象在第四象限的相交于點(diǎn)P,并且PA⊥y軸于點(diǎn)A,已知A (0,﹣6),且S△CAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)設(shè)Q是一次函數(shù)y=kx+3圖象上的一點(diǎn),且滿足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動(dòng)時(shí)間為t秒(0≤t≤6),試求S與t的函數(shù)表達(dá)式;
(3)在題(2)的條件下,是否存在某一時(shí)刻,使得△OMN的面積與OABC的面積之比為3:4?如果存在,請(qǐng)求出t的取值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com