【題目】已知關(guān)于x的分式方程

1)若方程的增根為x=1,求m的值

2)若方程有增根,求m的值

3)若方程無(wú)解,求m的值.

【答案】(1)m=-6;(2) 當(dāng)x=﹣2時(shí),m=1.5;當(dāng)x=1時(shí),m=﹣6;(3m的值為﹣1或﹣61.5

【解析】試題分析方程兩邊同時(shí)乘以最簡(jiǎn)公分母(x-1)(x+2),化為整式方程;

(1)把方程的增根x=1代入整式方程,解方程即可得;

(2)若方程有增根,則最簡(jiǎn)公分母為0,從而求得x的值,然后代入整式方程即可得;

(3)方程無(wú)解,有兩種情況,一種是原方程有增根,一種是所得整式方程無(wú)解,分別求解即可得.

試題解析:方程兩邊同時(shí)乘以(x+2)(x﹣1),

2x+2+mx=x-1,

整理得(m+1x=﹣5

1x=1是分式方程的增根,

1+m=﹣5,

解得:m=﹣6;

2∵原分式方程有增根,

x+2)(x﹣1=0,

解得:x=﹣2x=1,

當(dāng)x=﹣2時(shí),m=1.5;當(dāng)x=1時(shí),m=﹣6

3)當(dāng)m+1=0時(shí),該方程無(wú)解,此時(shí)m=﹣1;

當(dāng)m+1≠0時(shí),要使原方程無(wú)解,由(2)得:m=﹣6m=1.5

綜上,m的值為﹣1或﹣61.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程ax2+x﹣2=0有兩個(gè)不相等實(shí)數(shù)根,則a的取值范圍是(
A.a
B.a=
C.a 且a≠0
D.a 且a≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC,BAC=90°,AB=AC,直線(xiàn)MN過(guò)點(diǎn)AMNBC,點(diǎn)D是直線(xiàn)MN上一點(diǎn),不與點(diǎn)A重合.

(1)若點(diǎn)E是圖1中線(xiàn)段AB上一點(diǎn),且DE=DA,請(qǐng)判斷線(xiàn)段DEDA的位置關(guān)系,并說(shuō)明理由;

(2)請(qǐng)?jiān)谙旅娴?/span>A,B兩題中任選一題解答.

A:如圖2,在(1)的條件下,連接BD,過(guò)點(diǎn)DDPDB交線(xiàn)段AC于點(diǎn)P,請(qǐng)判斷線(xiàn)段DBDP的數(shù)量關(guān)系,并說(shuō)明理由;

B:如圖3,在圖1的基礎(chǔ)上,改變點(diǎn)D的位置后,連接BD,過(guò)點(diǎn)DDPDB交線(xiàn)段CA的延長(zhǎng)線(xiàn)于點(diǎn)P,請(qǐng)判斷線(xiàn)段DBDP的數(shù)量關(guān)系,并說(shuō)明理由.

我選擇:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,點(diǎn)EAD邊上,連接BE、CE,EB平分∠AEC .

(1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;

(2)如圖2,若∠A=90°,BC=5,AE=1,求線(xiàn)段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC與△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,連接BE,將BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得BF,連接AD,BD,AF

(1)如圖①,D、E分別在AC,BC邊上,求證:四邊形ADBF為平行四邊形;

(2)△DEC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),其它條件不變,如圖②,(1)的結(jié)論是否成立?說(shuō)明理由.

(3)在圖①中,將△DEC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一周,其它條件不變,問(wèn):旋轉(zhuǎn)角為多少度時(shí).四邊形ADBF為菱形?直接寫(xiě)出旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用T1、T2表示).
(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率P為;
(2)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1 , 利用列表法或樹(shù)狀圖加以說(shuō)明;
(3)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線(xiàn)y=2x﹣2與曲線(xiàn)y= (x>0)相交于點(diǎn)A(2,n),與x軸、y軸分別交于點(diǎn)B,C.

(1)求曲線(xiàn)的解析式;
(2)試求ABAC的值?
(3)如圖2,點(diǎn)E是y軸正半軸上一動(dòng)點(diǎn),過(guò)點(diǎn)E作直線(xiàn)AC的平行線(xiàn),分別交x軸于點(diǎn)F,交曲線(xiàn)于點(diǎn)D.是否存在一個(gè)常數(shù)k,始終滿(mǎn)足:DEDF=k?如果存在,請(qǐng)求出這個(gè)常數(shù)k;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF;EF與對(duì)角線(xiàn)AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,E是CD上的一點(diǎn),△ABF是△ADE的旋轉(zhuǎn)圖形.
(1)寫(xiě)成由△ADE順時(shí)針旋轉(zhuǎn)到△ABF的旋轉(zhuǎn)中心、旋轉(zhuǎn)角的度數(shù).
(2)連接EF,判斷并說(shuō)明△AEF的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案