【題目】如圖,直線與反比例函數(shù)的圖像交于點,與軸交于點,與軸交于點

1)求的值和反比例函數(shù)的表達式;

2)在軸上有一動點,過點作平行于軸的直線,交反比例函數(shù)的圖像于點,交直線于點,連接.若,求的值.

【答案】19;2n無解,理由見解析

【解析】

1)將點A的坐標代入直線中即可求出m的值,然后再將A點代入反比例函數(shù)表達式中即可得出反比例函數(shù)的表達式;

2)先根據(jù)直線求出點B,C的坐標,進而求出,則可求,然后根據(jù)P點坐標表示出D,E的坐標,進而表示出,然后建立一個關于n的方程,解方程即可.

解:(1)將代入直線中,得

代入中,得

反比例函數(shù)的解析式為

2)令時,;令時,則,解得

,,

,軸,

,

解得,,

,都不符合題意,舍去,

n無解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若一個函數(shù)當自變量在不同范圍內(nèi)取值時,函數(shù)表達式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學習函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:

x

0

1

2

3

y

1

2

1

0

1

2

描點:在平面直角坐標系中,以自變量x的取值為橫坐標,以相應的函數(shù)值y為縱坐標,描出相應的點,如圖所示.

1)如圖,在平面直角坐標系中,觀察描出的這些點的分布,作出函數(shù)圖象;

2)研究函數(shù)并結合圖象與表格,回答下列問題:

①點,,在函數(shù)圖象上,   ,   ;(填“>”,“=”或“<”)

②當函數(shù)值時,求自變量x的值;

③在直線的右側(cè)的函數(shù)圖象上有兩個不同的點,,且,求的值;

④若直線與函數(shù)圖象有三個不同的交點,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=4,BC=6,∠ACB=30°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1

1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);

2)如圖2,連接AA1,CC1.若△CBC1的面積為3,求△ABA1的面積;

3)如圖3,點E為線段AB中點,點P是線段AC上的動點.在△ABC繞點B按逆時針方向旋轉(zhuǎn)的過程中,點P的對應點是點P1,直接寫出線段EP1長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y3x的圖象相交于點C,點C的橫坐標為1

1)求k、b的值;

2)請直接寫出不等式kx+b3x0的解集.

3)若點Dy軸上,且滿足SBCD2SBOC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商店銷售A,B兩種型號的運動鞋,這兩種運動鞋的進價與售價如下表,2018年第一季度的總利潤為50 000元,其各月份的月利潤占季度總利潤的百分比如下圖.

兩種運動鞋的進價與售價表

A型號運動鞋

B型號運動鞋

進價(元/雙)

200

220

售價(元/雙)

250

280

(1)1月份的銷售利潤為 元;2月份的銷售利潤為 元,3月份的銷售利潤為_________元.

(2)如果A型運動鞋的2月份銷量比1月份提高了20%,B型運動鞋的2月份銷量是1月份的1.5倍,求1月份A、B兩種運動鞋的銷售量.

(3)已知3月份A型運動鞋的銷售量超過B型運動鞋的銷售量,問最多可能賣出B型運動鞋多少雙.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“只要人人都獻出一點愛,世界將變成美好的人間”,在新型肺炎疫情期間,全國人民萬眾一心,眾志成城,共克時艱.某社區(qū)積極發(fā)起“援鄂捐款”活動倡議,有2500名居民踴躍參與獻愛心.社區(qū)管理員隨機抽查了部分居民捐款情況,統(tǒng)計圖如圖:

1)計算本次共抽查居民人數(shù),并將條形圖補充完整;

2)根據(jù)統(tǒng)計情況,請估計該社區(qū)捐款20元以上(含20元)的居民有多少人?

3)該社區(qū)有1名男管理員和3名女管理員,現(xiàn)要從中隨機挑選2名管理員參與“社區(qū)防控”宣講活動,請用列表法或樹狀圖法求出恰好選到“11女”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB1,對角線AC,BD相交于點O,∠COD60°,點E是線段CD上一點,連接OE,將線段OE繞點O逆時針旋轉(zhuǎn)60°得到線段OF,連接DF

1)求證:DFCE;

2)連接EFOD于點P,求DP的最大值;

3)如圖2,點E在射線CD上運動,連接AF,在點E的運動過程中,若AFAB,求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸交于AB兩點(點A在點B左側(cè))

1)求拋物線的頂點坐標(用含的代數(shù)式表示);

2)求線段AB的長;

3)拋物線與軸交于點C(點C不與原點重合),若的面積始終小于的面積,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結果制成如下兩幅不完整的統(tǒng)計圖.

1)該班共有   名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為   ;

2)將條形統(tǒng)計圖補充完整;

3)已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?

查看答案和解析>>

同步練習冊答案