A. | 分類討論與轉(zhuǎn)化思想 | B. | 分類討論與方程思想 | ||
C. | 數(shù)形結(jié)合與整體思想 | D. | 數(shù)形結(jié)合與方程思想 |
分析 根據(jù)軸對稱的性質(zhì)屬于形,點的坐標(biāo)屬于數(shù),可知運用了數(shù)形結(jié)合的數(shù)學(xué)思想;根據(jù)解方程組,求得未知數(shù)的值,可知運用了方程思想.
解答 解:第一步:建立平面直角坐標(biāo)系,標(biāo)出A、B兩點,并利用軸對稱性質(zhì)求出A′、B′的坐標(biāo)分別為A′(3,2),B′(6,5),這是依據(jù)軸對稱的性質(zhì)求得點的坐標(biāo)(有序?qū)崝?shù)對),運用了數(shù)形結(jié)合的數(shù)學(xué)思想;
第二步:設(shè)直線A′B′的解析式為y=kx+b(k≠0),并將A′(3,2)、B′(6,5)代入y=kx+b中,得方程組$\left\{\begin{array}{l}{3k+b=2}\\{6k+b=5}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=1}\\{b=-1}\end{array}\right.$,最后求得直線A′B′的解析式為y=x-1,這里根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征,列出方程求得待定系數(shù),運用了方程思想;
所以王杰同學(xué)在解題過程中,運用到的數(shù)學(xué)思想是數(shù)形結(jié)合與方程思想.
故選:D.
點評 本題主要考查了一次函數(shù)與二元一次方程組的關(guān)系以及待定系數(shù)法求一次函數(shù)解析式,運用待定系數(shù)法求一次函數(shù)解析式一般步驟是:(1)先設(shè)出函數(shù)的一般形式;(2)將自變量x的值及與它對應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;(3)解方程或方程組,求出待定系數(shù)的值,進而寫出函數(shù)解析式.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 |
2x2-x-2 | -1 | 4 | 13 | 26 |
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 10是常量 | B. | 10是變量 | C. | b是變量 | D. | a是變量 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com