14.在△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD.
(1)如圖1,求證:CD=BD;
(2)如圖2,設(shè)⊙O交AC邊于點E,過D點作DG⊥AB,垂足為點G,交⊙O于點F,連接DE、EF,求證:∠DEC=∠AEF;
(3)在(2)的條件下,若tan∠CED=$\frac{4}{3}$,OG=$\frac{7}{6}$,求△AED的面積.

分析 (1)由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可得∠ADB=90°,然后由AB=AC,根據(jù)三線合一的性質(zhì),可證得CD=BD;
(2)由DG⊥AB,可得$\widehat{AF}$=$\widehat{AD}$,即可得∠ABD=∠AEF,繼而證得結(jié)論;
(3)首先連接OD,易求得tan∠ADF=$\frac{AG}{DG}$=$\frac{4}{3}$,再設(shè)AG=4x,DG=3x,在Rt△ODG中,可得($\frac{7}{6}$)2+(3x)2=(4x-$\frac{7}{6}$)2,即可求得AG,DG的長,然后再過點D作DH⊥CE于點H,求得AE的長,繼而求得答案.

解答 (1)證明:∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴CD=BD;

(2)證明:∵AB⊥DF,
∴$\widehat{AF}$=$\widehat{AD}$,
∴∠ABD=∠AEF,
∴∠ABD+∠AED=180°,∠DEC+∠AED=180°,
∴∠DEC=∠ABD=∠AEF;

(3)連接OD,
由(2)知,∠DEC=∠AEF,
∵∠AEF=∠ADF,
∴∠DEC=∠ADF,
∴tan∠ADF=tan∠DEC=$\frac{4}{3}$,
∵AB⊥DG,
∴tan∠ADF=$\frac{AG}{DG}$=$\frac{4}{3}$,
設(shè)AG=4x,DG=3x,
∵OG=$\frac{7}{6}$,
∴OD=OA=4x-$\frac{7}{6}$,
在Rt△ODG中,($\frac{7}{6}$)2+(3x)2=(4x-$\frac{7}{6}$)2,
解得:x=$\frac{4}{3}$,
∴AG=$\frac{16}{3}$,DG=4,
過點D作DH⊥CE于點H,
由(1)可知:AD平分∠BAC,
∴DH=DG=4,AH=AG=$\frac{16}{3}$,
∵tan∠EDC=$\frac{4}{3}$,
∴EH=3,
∴AE=$\frac{16}{3}$-3=$\frac{7}{3}$,
∴S△AED=$\frac{1}{2}$AE•DH=$\frac{1}{2}$×$\frac{7}{3}$×4=$\frac{14}{3}$.

點評 此題屬于圓的綜合題.考查了圓周角定理、等腰三角形的性質(zhì)以及銳角三角函數(shù)的知識.注意準(zhǔn)確作出輔助線、掌握方程思想的應(yīng)用是解此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)值y與自變量x的部分對應(yīng)值如表:
x-5-4-3-2-1
y3-2-5-6-5
則關(guān)于x的一元二次方程ax2+bx+c=3的根是-5或1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知一次函數(shù)y=kx+b(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,2),B(0,1).
(1)求該一次函數(shù)的解析式,并作出其圖象;
(2)當(dāng)0≤y≤2時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在梯形ABCD中,AD∥BC,BC=2AD,過點A作AE∥DC交BC于點E.
(1)寫出圖中所有與$\overrightarrow{AD}$互為相反向量的向量:$\overrightarrow{DA}$,$\overrightarrow{CE}$,$\overrightarrow{EB}$;
(2)求作:$\overrightarrow{AD}-\overrightarrow{AE}$、$\overrightarrow{AB}+\overrightarrow{DC}$.(保留作圖痕跡,寫出結(jié)果,不要求寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC內(nèi)接于⊙O,BC為直徑,動點D在⊙O上(與點A、B不重合),點E在弦BD上,直線AE交直徑BC于點F,且∠AEB=∠BAD.
(1)如圖1,求證:AF⊥BC;
(2)如圖2,連接CD,當(dāng)點D、A位于直徑BC的兩側(cè)時,若∠CAD+∠CAE=∠ACB,求證:BF=CD+CF;
(3)如圖3,在(2)的條件下,連接DF,設(shè)AD、BC相交于點G,若sin∠CAD=$\frac{1}{4}$,F(xiàn)G=$\frac{5}{3}$,求線段DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為1,∠CBD=30°,則圖中陰影部分的面積;
(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA=$\frac{2}{3}$,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.點M(4-2a,a+5)在第二象限,求出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.閱讀下列材料:
2016年6月24日,以“共赴百合之約•夢圓世園延慶”為主題的第二屆北京百合文化節(jié)在延慶區(qū)世界葡萄博覽園拉開帷幕,本屆百合文化節(jié)突出了2019年世界園藝博覽會元素,打造“一軸、四片區(qū)、五主景”的百合主題公園,為市民呈現(xiàn)百合的饕餮盛宴.
據(jù)介紹,四片區(qū)的花海景觀是由“麗花秀”、“畫卷”、“媯河謠”和“水云天”組成.設(shè)置在科普館的“麗花秀”,借鑒西班牙的鑲嵌藝術(shù),利用小麗花打造大型立體景觀.這里種植的小麗花的株數(shù)比2015年增加了10%;設(shè)置在葡萄盆栽區(qū)的“畫卷”,由9個模塊組成一幅壯觀的“畫卷”,這里種植了40萬株的葡萄,有1014個世界名優(yōu)新品.設(shè)置在主題餐廳東側(cè)的“媯河謠”,利用流淌的線條,營造令人震撼的百合花溪;這里的百合有240個品種,種植達到220萬株,比2015年多了70萬株.設(shè)置在科普館東側(cè)的“水云天”,設(shè)計體現(xiàn)了“水天交融”的流暢曲線美,種植的50萬株向日葵花與100畝紫色的薰衣草交相輝映,仿佛美麗的畫廊.
據(jù)主辦方介紹,2015年第一屆百合文化節(jié),種植的百合有230多個品種,種植小麗花18萬株;葡萄品種總數(shù)達600多種,種植了30萬株; 向日葵花也達到了25萬株.
根據(jù)以上材料解答下列問題:
(1)2016年第二屆北京百合文化節(jié),種植的小麗花的株數(shù)為19.8萬株;
(2)選擇統(tǒng)計表或統(tǒng)計圖,將2015、2016年百合文化節(jié)期間在世葡園種植的百合、小麗花、葡萄的株數(shù)表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖△ABC的頂點坐標(biāo)分別為A(1,1),B(2,3),C(3,0).
(1)以點O為位似中心畫△DEF,使它與△ABC位似,且相似比為2.
(2)在(1)的條件下,若M(a,b)為△ABC邊上的任意一點,則△DEF的邊上與點M對應(yīng)的點M′的坐標(biāo)為(2a,2b)或(-2a,-2b).

查看答案和解析>>

同步練習(xí)冊答案